• Title/Summary/Keyword: communication noise

Search Result 2,895, Processing Time 0.026 seconds

Measurement set-up for CMOS-based integrated circuits and systems at cryogenic temperature (CMOS 기반의 집적 회로 및 시스템을 위한 극저온 측정 환경 구축)

  • Hyeon-Sik Ahn;Yoonseuk Choi;Junghwan Han;Jae-Won Nam;Kunhee Cho;Jusung Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 2024
  • In this work, we introduce a complementary metal-oxide semiconductor(CMOS)-based integrated circuit(IC) measurement set-up for quantum computer control and read-out using a cryogenic refrigerator. CMOS circuits have to operate at extremely low temperatures of 3 to 5 K for qubit stability and noise reduction. The existing cryogenic measurement system is liquid helium quenching, which is expensive due to the long-term use of expendable resources. Therefore, we describe a cryogenic measurement system based on a closed cycle refrigerator (CCR) that is cost-free even when using helium gas for long periods of time. The refrigerator capable of reaching 4.7 K was built using a Gifford-Mcmahon(G-M) type cryocooler. This is expected to be a cryogenic refrigerator set-up with excellent price competitiveness.

Statistical Voice Activity Defector Based on Signal Subspace Model (신호 준공간 모델에 기반한 통계적 음성 검출기)

  • Ryu, Kwang-Chun;Kim, Dong-Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.372-378
    • /
    • 2008
  • Voice activity detectors (VAD) are important in wireless communication and speech signal processing, In the conventional VAD methods, an expression for the likelihood ratio test (LRT) based on statistical models is derived in discrete Fourier transform (DFT) domain, Then, speech or noise is decided by comparing the value of the expression with a threshold, This paper presents a new statistical VAD method based on a signal subspace approach, The probabilistic principal component analysis (PPCA) is employed to obtain a signal subspace model that incorporates probabilistic model of noisy signal to the signal subspace method, The proposed approach provides a novel decision rule based on LRT in the signal subspace domain, Experimental results show that the proposed signal subspace model based VAD method outperforms those based on the widely used Gaussian distribution in DFT domain.

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

Imaging Characteristics of Computed Radiography Systems (CR 시스템의 종류와 I.P 크기에 따른 정량적 영상특성평가)

  • Jung, Ji-Young;Park, Hye-Suk;Cho, Hyo-Min;Lee, Chang-Lae;Nam, So-Ra;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • With recent advancement of the medical imaging systems and picture archiving and communication system (PACS), installation of digital radiography has been accelerated over past few years. Moreover, Computed Radiography (CR) which was well established for the foundation of digital x-ray imaging systems at low cost was widely used for clinical applications. This study analyzes imaging characteristics for two systems with different pixel sizes through the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). In addition, influence of radiation dose to the imaging characteristics was also measured by quantitative assessment. A standard beam quality RQA5 based on an international electro-technical commission (IEC) standard was used to perform the x-ray imaging studies. For the results, the spatial resolution based on MTF at 10% for Agfa CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.9 cycles/mm and 2.8 cycles/mm, respectively. The spatial resolution based on MTF at 10% for Fuji CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.4 cycles/mm and 3.2 cycles/mm, respectively. There was difference in the spatial resolution for $14{\times}17$ inches, although radiation dose does not effect to the MTF. The NPS of the Agfa CR system shows similar results for different pixel size between $100{\mu}m$ for $8{\times}10$ inch I.P and $150{\mu}m$ for $14{\times}17$ inch I.P. For both systems, the results show better NPS for increased radiation dose due to increasing number of photons. DQE of the Agfa CR system for $8{\times}10$ inch I.P and $14{\times}17$ inch I.P resulted in 11% and 8.8% at 1.5 cycles/mm, respectively. Both systems show that the higher level of radiation dose would lead to the worse DQE efficiency. Measuring DQE for multiple factors of imaging characteristics plays very important role in determining efficiency of equipment and reducing radiation dose for the patients. In conclusion, the results of this study could be used as a baseline to optimize imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE for different level of radiation dose.

  • PDF

A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems (3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기)

  • Lee, Dong-Suk;Lee, Myung-Hwan;Kwon, Yi-Gi;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.75-85
    • /
    • 2009
  • This work proposes a 13b 100MS/s 0.13um CMOS ADC for 3G communication systems such as two-carrier W-CDMA applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs a four-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. Area-efficient high-speed high-resolution gate-bootstrapping circuits are implemented at the sampling switches of the input SHA to maintain signal linearity over the Nyquist rate even at a 1.0V supply operation. The cascode compensation technique on a low-impedance path implemented in the two-stage amplifiers of the SHA and MDAC simultaneously achieves the required operation speed and phase margin with more reduced power consumption than the Miller compensation technique. Low-glitch dynamic latches in sub-ranging flash ADCs reduce kickback-noise referred to the differential input stage of the comparator by isolating the input stage from output nodes to improve system accuracy. The proposed low-noise current and voltage references based on triple negative T.C. circuits are employed on chip with optional off-chip reference voltages. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.70LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 64.5dB and a maximum SFDR of 78.0dB at 100MS/s, respectively. The ABC with an active die area of $1.22mm^2$ consumes 42.0mW at 100MS/s and a 1.2V supply, corresponding to a FOM of 0.31pJ/conv-step.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

The Optimal Turbo Coded V-BLAST Technique in the Adaptive Modulation System corresponding to each MIMO Scheme (적응 변조 시스템에서 각 MIMO 기법에 따른 최적의 터보 부호화된 V-BLAST 기법)

  • Lee, Kyung-Hwan;Ryoo, Sang-Jin;Choi, Kwang-Wook;You, Cheol-Woo;Hong, Dae-Ki;Kim, Dae-Jin;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.40-47
    • /
    • 2007
  • In this paper, we propose and analyze the Adaptive Modulation System with optimal Turbo Coded V-BLAST(Vertical-Bell-lab Layered Space-Time) technique that adopts the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding as a priori probability in two decoding procedures of V-BLAST; the ordering and the slicing. Also, we consider and compare the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme and the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is decoded by the ML (Maximum Likelihood) decoding algorithm. We observe a throughput performance and a complexity. As a result of a performance comparison of each system, it has been proved that the complexity of the proposed decoding algorithm is lower than that of the ML decoding algorithm but is higher than that of the conventional V-BLAST decoding algorithm. however, we can see that the proposed system achieves a better throughput performance than the conventional system in the whole SNR (Signal to Noise Ratio) range. And the result shows that the proposed system achieves a throughput performance close to the ML decoded system. Specifically, a simulation shows that the maximum throughput improvement in each MIMO scheme is respectively about 350 kbps, 460 kbps, and 740 kbps compared to the conventional system. It is suggested that the effect of the proposed decoding algorithm accordingly gets higher as the number of system antenna increases.

Extraction of Sternocleidomastoid Muscle for Ultrasound Images of Cervical Vertebrae (경추 초음파 영상에서 흉쇄유돌근 추출)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2321-2326
    • /
    • 2011
  • Cervical vertebrae are a complex structure and an important part of human body connecting the head and the trunk. In this paper, we propose a method to extract sternocleidomastoid muscle from ultrasonography images of cervical vertabrae automatically. In our method, Region of Interests(ROI) is extracted first from an ultrasonography image after removing unnecessary auxiliary information such as metrics. Then we apply Ends-in search stretching algorithm in order to enhance the contrast of brightness. Average binarization is then applied to those pixels which its brightness is sufficiently large. The noise part is removed by image processing algorithms. After extracting fascia encloses sternocleidomastoid muscle, target muscle object is extracted using the location information of fascia according to the number of objects in the fascia. When only one object is to be extracted, we search downward first to extract the target muscle area and then search from right to left to extract the area and merge them. If there are two target objects, we extract first from the upper-bound of higher object to the lower-bound of lower object and then remove the fascia of the target object area. Smearing technique is used to restore possible loss of the fat area in the process. The thickness of sternocleidomastoid muscle is then calculated as the maximum thickness of those extracted objects. In this experiment with 30 real world ultrasonography images, the proposed method verified its efficacy and accuracy by health professionals.

Trace-Back Viterbi Decoder with Sequential State Transition Control (순서적 역방향 상태천이 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.51-62
    • /
    • 2003
  • This paper presents a novel survivor memeory management and decoding techniques with sequential backward state transition control in the trace back Viterbi decoder. The Viterbi algorithm is an maximum likelihood decoding scheme to estimate the likelihood of encoder state for channel error detection and correction. This scheme is applied to a broad range of digital communication such as intersymbol interference removing and channel equalization. In order to achieve the area-efficiency VLSI chip design with high throughput in the Viterbi decoder in which recursive operation is implied, more research is required to obtain a simple systematic parallel ACS architecture and surviver memory management. As a method of solution to the problem, this paper addresses a progressive decoding algorithm with sequential backward state transition control in the trace back Viterbi decoder. Compared to the conventional trace back decoding techniques, the required total memory can be greatly reduced in the proposed method. Furthermore, the proposed method can be implemented with a simple pipelined structure with systolic array type architecture. The implementation of the peripheral logic circuit for the control of memory access is not required, and memory access bandwidth can be reduced Therefore, the proposed method has characteristics of high area-efficiency and low power consumption with high throughput. Finally, the examples of decoding results for the received data with channel noise and application result are provided to evaluate the efficiency of the proposed method.