• Title/Summary/Keyword: commercial rubber

Search Result 142, Processing Time 0.025 seconds

Computer Simulation of Deformation Behavior of the Rubber Diaphragm (고무 다이아프램의 변형거동 전산해석)

  • Cho, Seong-Do-Seong;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.4-11
    • /
    • 2000
  • A rubber diaphragm is a critical element of accumulators. The material of a diaphragm is nitrile rubber so as to recover and adjust the large deformation under external pressure fluctuation. The performance of accumulators is influenced by the deformation behaviors of the diaphragm. A large deformation behavior of the diaphragm has been investigated using the commercial finite element program MARC K7.1. The several elastic moduli have been used in linear analysis and Ogden's coefficients have been used in non-linear analysis. As a result, it has been shown that the deformation behavior with a elastic modulus of $0.3 kg/mm^2$ is similar to the behavior of non-linear analysis. And, the modified diaphragm shape to reduce the stress concentration has been proposed.

  • PDF

Microwave Cure of Rubber Compound for Tire Tread (타이어 트레드용 고무배합물의 마이크로파 가황)

  • Han, Shin;Kang, Yong-Gu;Sohn, Bong-Young;Oh, Sei-Chul;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 1999
  • Intending to develop a new rubber curing process using only microwave, the both the characteristics of cure and the mechanical properties of rubbers for the tire tread, for which a green styrene-butadiene compounds had been cured with 2.45 GHz microwave, have been compared with those of the custom thermal cured rubber. The unintentional hot spot formation in the compound during the microwave curing has not found where the compound has a microwave absorbing ceramic powders in 4.18 weight percents and the supplying voltage has been adjusted to 90 volts. The new microwave process accomplished preheating to 418K in a quarter of the thermal cure time. The average tensile strength of the microwave-cured rubber indicating $190kg/cm^3$ was compatible to that of the thermal cure. In conclusion, the new microwave cure had approved to be applicable in a commercial plant.

  • PDF

Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator (자동차 방진 고무 부품의 유한요소해석 및 피로수명평가)

  • Kim, W.D.;Woo, C.S.;Han, S.W.
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • A strut rubber insulator is used in a suspension component of passenger cars. The uni-axial tension, compression, and the shear test were performed to acquire the constants of the strain energy functions which were Mooney-Rivlin model and Ogden model. The finite element analysis was executed to evaluate the behavior of deformation and stress distribution by using the commercial finite element code MARC ver K6.2. Also, the fatigue tests were carried out to obtain the fatigue life-load curve. The fatigue failure was initiated at the folded position of rubber, which was the same result predicted by the finite element analysis.

  • PDF

Studies on the Graft Copolymerization of Glycidylmethacrylate to Chloroprene Rubber and the Adhesive Nature of the Copolymer (클로로프렌고무와 글리시딜메타아크릴과의 그라프트 공중합 반응과 그 공중합물의 접착능에 관한 연구)

  • Sohn, Jin-Eon;Choe, Byong-Kwon
    • Elastomers and Composites
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1976
  • It has been studied the graft copolymerization of glycidyl-methacrylate monomer containing two functional groups (vinyl- & epoxyl-) to chloroprene rubber. The reaction occured in the manner of chain transfer mechanism was carried out by means of solution polymerization in toluene in the presence of benzoyl peroxide as the radical initiator. The graft copolymer obtained from this work was analyzed by using IR spectrum, and the physical properties of the polymer such as the thermal behavior were also studied according to TG-DTA methods, and the potency of adhesiveness for the purpose of commercial application was investigated. Experimental results for the graft copolymerization are summarized as follows. 1) A small amount of initiator (0.5%) and 50% of monomer showed the best result for the grafting of monomer to the polymer chain of rubber while the 15% of rubber solution was found to be most suitable to raise either for the grafting ratio or the polymerization ratio. 2) Optimum temperature for better yield of graft copolymer was proved to he at $75^{\circ}C\sim80^{\circ}C$ while those of reaction time was to be $1\sim2$ hours.

  • PDF

Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach (형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화)

  • Kim, J.J.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

Hyperelastic Finite Element Formulation using Pressure Potential (압력포텐샬을 이용한 초탄성 유한요소 정식화)

  • Kim, Heon-Young;Kim, Ho;Kim, Joong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.

Comparison of CAE Flow Analysis and Practical Molding on Elastomer Injection Molding (엘라스토머 사출성형시 CAE 유동해석과 실제 성형품의 비교)

  • Han S.R.;Kim J.H.;Jeon S.G.;Lee G.H.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.375-376
    • /
    • 2006
  • Thermoplastic elastomer(TPE) can be molded by conventional injection molding. Therefore TPE injection molding could be analyzed by commercial flow analysis software. However there are a little of gaps on CAE simulation results and practical molding. In this study, the properties of TPE were measured and applied to CAE simulation for comparing the simulation flow pattern and real flow pattern. The pattern that was controlled by injection time was match. The pattern that was controlled by injection stroke and rate was not match.

  • PDF

Prediction and Evaluation of Characteristics of Air Spring for Railroad Vehicle (철도차량용 공기스프링의 특성 예측 및 평가)

  • Kim, Wan-Doo;Hur, Shin;Kim, Suk-Won;Kim, Young-Gu
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.626-633
    • /
    • 2000
  • An air spring which is a part of the railroad vehicle suspension system is used to reduce and absorb the vibration and the noise. Main components of the air spying are a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring. The characteristics of the air spring which are the load capacity, the vertical and the horizontal stiffness are depended on the configuration of rubber bellows, the angle of cord and the mechanical properties of cord. The computer simulation using commercial finite element analysis codes are executed to predict and evaluate the load capacity and the stiffness. The appropriate shape and cord angle of the air suing are selected to adjust the required performance of the air spring. Several samples of the air spring are manufectured and experimented. It is shown that the results by computer simulation are in close agreement with the test results.

  • PDF

Effect of Process Aids on Rheological and Mechanical Properties of Styrene-Butadiene Rubber Compound (가공조제가 Styrene-Butadiene Rubber 배합고무의 유변특성 및 기계적 물성에 미치는 영향)

  • Kang, Yong-Gu;Jung, Hoon;Kim, Tae-Nyun;Kim, Wan-Doo;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.170-176
    • /
    • 2002
  • Effects of type and loading level of process aids on the rheological and mechanical properties of styrene-butadiene rubber (SBR) compound were investigated. Five commercial grades of process aids composed of fatty acids and their various derivatives such as metal salts, esters, alcohols and amides were selected. The reduction in Mooney and shear viscosities was higher for metal salt-type process aids but lower for the process aids containing high molecular weight fatty acid alcohols and esters with increasing the loading of process aids. Tensile modulus generally decreased, while heat-build-up increased with increased process aids content. No considerable effect was observed for ulimate properties such as tensile strength and elongation at break.

Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds (모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사)

  • Park, Dong-Myung;Kim, Hok-Joo;Yoon, Jae-Ryong;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • Rubber compounds have a high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate, and the amount of swelling varies with operational conditions in extrusion. It is well recognized that the elastic portion in the viscoelastic property plays an important role in the extrudate swell. In this study computer simulation of the die swell at the capillary die for several rubber compounds has been performed using commercial CFD code, Polyflow. A non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model, was used in the computer simulation. Non-isothermal behavior was considered in the calculation. Distribution of pressure, velocity and temperature in the reservoir and capillary die, and extrudate profiles were predicted through the simulation. The amount of the die swell fur the different rubber compounds was investigated for various flow rates and three types of length to diameter of the capillary die. It is concluded that the PTT model successfully represented viscoelastic behavior of rubber compounds.