• 제목/요약/키워드: comfort level

검색결과 475건 처리시간 0.027초

소음이 실내 온열감과 온열쾌적감에 미치는 영향 (Effects of Noise on Indoor Thermal Sensation and Comfort)

  • 양원영
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.83-89
    • /
    • 2017
  • Purpose: Thermal sensation or thermal comfort was randomly used in many studies which focused on combined effects of thermal and acoustic environments on human perception. However, thermal sensation and thermal comfort are not synonyms. Thermal comfort is more complex human perception on thermal environment than thermal sensation. This study aims to investigate effects of noise on thermal sensation and thermal comfort separately, and also to investigate effects of temperature on acoustic sensation and comfort. Method: Combined thermal and acoustic configurations were simulated in an indoor environmental chamber. Twenty four participants were exposed to two types of noise (fan and babble) with two noise levels (45 dBA and 60 dBA) for an hour in each thermal condition of PMV-1.53, 0.03, 1.53, 1.83, respectively. Temperature sensation, temperature preference, thermal comfort, noisiness, loudness, annoyance, acoustic comfort, indoor environmental comfort were evaluated in each combined environmental condition. Result: Noise did not affected thermal sensation, but thermal comfort significantly. Temperature had an effect on acoustic comfort significantly, but no effect on noisiness and loudness in overall data analysis. More explicit interactions between thermal condition and noise perception showed only with the noise level of 60 dBA. Impacts of both thermal comfort and acoustic comfort on the indoor environmental comfort were analyzed. In adverse thermal environments, thermal comfort had more impact than acoustic comfort on indoor environmental comfort, and in neutral thermal environments, acoustic comfort had more important than thermal comfort.

도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구 (A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle)

  • 박남철;구정서
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.

Fuzzy-Weighted Score를 이용한 쾌적감성 평가모형 (Modeling for Evaluating the Comfort Sensibility using Fuzzy-Weighted Score)

  • 전용웅;조암
    • 산업공학
    • /
    • 제18권2호
    • /
    • pp.158-166
    • /
    • 2005
  • Human-error and mental stress caused by psychophysiological dissonance between people and artificial environments have become a social problem. And it is a common knowledge that comfort environment reduces human-error and mental stress. Comfort sensibility is related to complex interactions between fabric, climatic, physiological and psychological variables. Currently, comfort sensibility has been evaluated by many sensory tests. However, it is difficult to evaluate comfort sensibility because a concrete concept of comfort sensibility is hard to define. In this paper, we propose a model to evaluate the comfort sensibility using Fuzzy-weighted score on an individual's subjective state for the stimulus. To represent the degree of comfort sensibility level for the stimulus, we represent comfort sensibility using 2 dimensional sensibility vector model. And we use the fuzzy-weighted score that is a fuzzy version of the weighted checklist technique computerized for evaluating the subjects. As an example, this model is applied to 1/f fluctuation sound evaluation. The results show that this model can be effectively used to the quantitative evaluation of comfort sensibility for the stimulus.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

공업화 주택의 쾌적성에 대한 거주자 반응 (Evaluation on comfort in P.C. Apartment)

  • 이지숙
    • 한국주거학회논문집
    • /
    • 제8권2호
    • /
    • pp.107-112
    • /
    • 1997
  • This thesis is dealt with the thermal environment, the indoor air environment, the sound environment and the light environment in P.C apartment house. The purpose of this study is to analyze degrees of 'the cognition'. 'the importance', and ‘the satisfaction' on indoor environmental factors and to evaluate comfort of indoor environment based on residents' responses. The questionnaire survey was given to the residents at P.C apartment complex in Rowon-Gu, Seoul. The following are the results obtained in this thesis. The results of Path analysis on comfort revealed that factors of direct effect to comfort were the satisfaction on indoor air environment and sound environment and the cognition on indoor air environment and sound environment. The satisfaction on indoor air environment was the biggest variable which decided the comfort. By the survey of P.C apartment residents' responses, the level of P.C apartment indoor comfort was found uncomfortable. It is meaningful to su99est the model evaluating comfort by residents' responses .

  • PDF

An Experimental Study of Comfortable Pitch and Loudness with Target Matching: Effects on Electroglottographic and Acoustic Measures

  • 최성희
    • 말소리와 음성과학
    • /
    • 제4권4호
    • /
    • pp.139-146
    • /
    • 2012
  • This study was designed to examine comfort levels of pitch and loudness with target matching and their effects on electroglottographic (EGG) and acoustic measures. Twelve speakers, six males and six females, were instructed to produce /a/ sustained vowel for three seconds at a comfortable pitch and loudness level without any instruction and with a target matching procedure of either a certain f0 or SPL separately with visual and auditory feedback. The range of pitch for females and males were presented by progressing up and down randomly at intervals of 5Hz from 150 Hz to 310 Hz (total 33 frequency targets) and from 85 Hz to 190 Hz (total 22 frequency targets), respectively. The loudness levels were 65, 75, 85, 95 dB (total of four intensity targets) for both males and females. Subjective estimations of comfortable levels were obtained using a 10-point equal-appearing interval rating scale following each phonation. The results showed that males and females demonstrated similar trends in loudness levels with greatest comfort at 75 dB, whereas pitch comfort ratings showed a greater variability with females having a wider range with target matching. In the comfort levels of individuals, most male and female speakers rated higher comfort at soft, rather than loud phonations. On the other hand, most male speakers perceived highest comfort levels below the comfort pitch levels they phonated under natural conditions. Higher frequency ranges, however, were perceived to be more comfortable than those of natural condition in most female speakers, although the comfortable pitch levels in spontaneous phonations were within the comfort level ranges determined by targeted phonations. When comparing acoustic (%jitter, %shimmer, SNR) and EGG measures (CQ%) between spontaneous comfortable phonations and targeted phonations produced by the same subject at similar f0 and intensity, no significant differences were observed (p>0.05). Thus, target matching procedures may be considered a compatible and alternative method to reduce the variability of comfortable pitch and loudness levels by eliciting consistent comfortable phonations.

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • 센서학회지
    • /
    • 제12권1호
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..

T-50/A-50 조종사의 인체 진동 영향성 평가 (The Evaluation of Human Vibration Effect on T-50/A-50 Pilot)

  • 문성욱;조대현;김영익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.546-549
    • /
    • 2004
  • The T-50/A-50 Golden Eagle was developed for a supersonic trainer and light combat aircraft. At the design stage, vibration control plans were established and applied. For cockpit vibration, crew comfort vibration level was defined by the requirement of MIL-A-8892. It is found that the T-50/A-50 meets the requirement of cockpit vibration from the flight test data analysis. This paper contains the results of cockpit vibration analysis using the flight test data and the results of human vibration analysis lot the pilot inside aircraft. The human vibration level of pilot is increased as dynamic pressure is increased and at the specific high dynamic pressure, the ride comfort indicates 'a little uncomfortable'. Overall analysis results show that the vibration level of T-50/A-50 cockpit is tolerable and not critical for pilot's comfort.

  • PDF

블라인드연동 LED조명의 조광제어에 따른 재실자의 밝기 변화 인식에 관한 연구 (A Study on the Perception of the Brightness Change according to Daylight Responsive LED Dimming Systems and Venetian Blind)

  • 염현주;김인태;최안섭
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.44-53
    • /
    • 2013
  • This study has attempted to investigate how subjects perceive changes of brightness and their visual comfort according to daylight responsive LED(Light Emitting Diode) dimming systems in the office with venetian blind. Two studies was conducted. First study is that how subjects perceive changes of brightness and their visual comfort depending on angle control method of the venetian blind while the workplane illuminance level is being maintained through daylight responsive LED dimming system. Second study is that how subjects perceive changes of brightness and their visual comfort depending on the amount of daylight penetrated into the building while the illuminance level is being maintained through daylight responsive LED dimming system. The results of this study could be proposed as basic data in the control of the venetian blind and LED lighting in consideration of their perception on changes of brightness and visual comfort.

고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석 (Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line)

  • 김석원;박찬경;김기환;박태원;김영국
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.