• Title/Summary/Keyword: combustion products

Search Result 331, Processing Time 0.031 seconds

Experimental Study on the Effects of Combustion Products on the Human Body and Suggestion of Law Revision (흡음재의 연소 생성물이 인체에 미치는 영향에 대한 실험적 연구 및 법률 개정 제언)

  • Kang, Jung Ki;Choi, Don Mook
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • Regardless of the ignition source, the main factors affecting the spread of flames to the human body are combustibles. The sound absorption material, which is the finishing material used in music institutes and karaoke rooms, consists of polyurethane that generates a large amount of toxic gas with a high amount of combustion gases during a fire. Still, the current law does not require the use of impregnated finishing materials for tutoring services with less than 100 users. In this study, the rate of flame diffusion was measured using the MultiRaelite composite gas measuring instrument (target substance VOC, HCHO, SO2, CO2, CO, HCN, and NO2) for the collection of sound-absorbing materials installed in the actual music academy. The results showed that the toxic gas found in this experiment exceeded the allowable concentration of TWA (Time Weighted Average) and STEL (Short Term Exposure Limit). In addition, a comparative combustion test of the general sound absorber and non-combustion sound absorbing materials on the market showed wide differences in ignition and diffusion. Therefore, based on the results of the experiment, private institutes with less than 100 users should be mandated to use non-combustion sound absorbing materials.

The Characterization of Incomplete Combustion Products in Open Burning (노천소각에서 배출되는 불완전연소생성물 특성 연구)

  • Jung, No-El;Heo, Sun-Hwa;Jo, Myeong-Ran;Kim, Hyung-Chun;Jang, Se-Kyung;Hong, Ji-Hyung;Dong, Jong-In;Lee, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • It is very important to investigate air pollutants emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S EPA and investigated emissions of CO, OC/EC, from household waste and biomass burning to estimate pollutant emissions by illegal incineration of biomass wastes. Emission factor of OC was estimated as 17.1 g/kg for rice strew, 23.5 g/kg for barley, 10.3 g/kg for corn stover, 4.3 g/kg for unseasoned wood, respectively. In case of EC, it was calculated as 1.6 g/kg for rice strew, 4.3 g/kg for barley, 1.4 g/kg for corn stover, 0.6 g/kg for unseasoned wood, respectively. Most of the pollutants emissions were emitted at the stage 1 and 2. In the stage 3, the pollutants concentration decreased gradually. To estimate emissions and build inventory for biomass burning, we need to know accurate activity data. We, therefore, used activity data of both survey results of previous study and statistical data of National Statistical Office. However, we need to perform additional experiments in the future to obtain more accurate activity data for various cases.

Disposal and Waste-to-Fuel of Infected Poultry with Avian Influenza(AI) Using Thermal Hydrolysis Reaction (열가수분해 반응을 이용한 조류인플루엔자(AI) 감염 가금류의 사체처리 및 연료화)

  • Song, Chul-Woo;Kim, Nam-Chan;Jeong, Guk;Ryu, Jae-Keun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.49-57
    • /
    • 2016
  • In this study, a thermal hydrolysis technology was used to treat the poultry carcasses that were killed due to Avian Influenza (AI) occurrence, as well as to determine the possibility of fueling for the resultant products. Experimental results showed that the poultry carcasses were liquefied except for sand, and showed the optimum efficiency at $190^{\circ}C$ and operating time of 60 minutes. It has been shown that liquid products obtained after thermal hydrolysis has good conditions for fuel conversion since it had high carbon contents and calorific value, as well as low ash content. In addition, it was possible to operate the thermal hydrolysis facility by using only the waste heat generated in the combustion without injecting the auxiliary fuel, and the exhaust gas generated in the combustion has a small influence on the atmosphere.

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.217-231
    • /
    • 2006
  • The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

Mechanical Properties of Non-cement Matrix Utilizing the Circulating Fluidized Bed Combustion Boiler Fly Ash and Dyeing Sludge Carbide (염색슬러지 탄화물과 순환 유동층 연소 보일러 플라이애시를 활용한 무시멘트 경화체의 역학적 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Yong;Shin, Jin-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Both rapid industrial development and society has achieved more comfortable life. But, behind this facts of this industrial development have current pictures that occur global warming and much more by-products by environmental pollution. Therefore, this study used BFS and CFA as by-products to reduce cement usage emitted at a high rate of $CO_2$ gas, to examine sludge recycling strategy more than 200,000ton emitted at local dyeing complex, we suggest basic data research about non-cement matrix properties of utilizing dyeing sludge carbide. As a result, the more dyeing sludge carbide replacement ratio gets higher, the more air content and flow rise. Also, as the dyeing sludge carbide replacement ratio increase more, flexural strength and compressive strength go down.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

  • Wistara, Nyoman J;Rohmatullah, Moh Arif;Febrianto, Fauzi;Pari, Gustan;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.671-681
    • /
    • 2017
  • Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.

Degradation Properties and Production of Fuels from Hemicellulose by Acetone-Solvolysis (아세톤 용매분해법에 의한 헤미셀룰로오스의 분해특성 및 연료물질의 생성)

  • Lee, Jong-Jib
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • In this study, thermochemical degradation of hemicellulose by Acetone-Solvolysis, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperature from $200{\circ}C$ to $400{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. ketones, as 4-methyl-3-penten-2-one, 3-methylene-2-pentanone, 22,6-dimethyl-2, 5-heptadien-4-one, 4-methyl-2-pentanone, 5-methyl-2-hexanone, 3,5,5-trimethyl-2-cyclohexen-1-one, and bezenes. as 1,4-dimethylbenzene, 1-methyl-2-(1-methylethyl)-benzene, 1,4-dimethyl-2-(2-methylpropyl)benzene, 4-secbutyl-ethyl benzene, could be used as high-octane-value fuels and fuel additives. Combustion heating value of liquid products from thermochemical conversion processes of hemicellulose was in the range of $6,680{\sim}7,170cal/g$. After 40min of reaction at $400{\circ}C$ in Acetone-Solvolysis of hemicellulose, the energy yield and mass yield was as high as 72.2% and 41.2g oil/100g raw material, respectively.

Degradation Properties and Production of Fuels of Cellulose - Pyrolysis-Liquefaction - (셀룰로오스의 분해특성 및 연료물질 생성 (I) -열분해·액화반응-)

  • Lee, Jong-Jip;Lee, Byeong-Hak
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.4
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, thermochemical degradation by pyrolysis-liquefaction of cellulose, the effects of reaction time, reaction temperature, conversion yield, degradation properties and degradation products were investigated . Experiments were performed in a tube reactor by varying reaction time from 20 to 80 min at $200{\sim}500^\circ{C}$. Combustion heating value of liquid products from thermochemical conversion processes of cellulose was in the range of 6,920~6,960cal/g. After 40min of reaction at $400^\circ{C}$ in pyrolysis-liquefaction of cellulose, the energy yield and mass yield was as high as 54.3% and 34.0g oil/100g raw material, respectively. The liquid products from pyrolysis-liquefaction of cellulose contained various kinds of ketones, phenols and furans. ketones and furans could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels.

An Experimental Study on the Strength Development of Using Fly-Ash 100% Mortar for Binder (결합재로서 플라이애쉬 100% 사용 모르타르의 강도발현에 관한 실험적 연구)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Ahn, Ki-Hong;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.721-724
    • /
    • 2008
  • Recently, by-products for example of fly-ash, blast-furnace slag and etc are generally using in concrete. However a mount of by-products are mostly dropped into the land and sea. Expecially it is necessary to manage against London Dumping Convention which is prohibited for throwing the by-product into the sea. The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cements.

  • PDF