• Title/Summary/Keyword: combustion process

Search Result 1,367, Processing Time 0.031 seconds

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism (Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development (지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구)

  • Young Bae Kim;Kijin Jeong;Woohyun Jung;Seok Woo Chung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS (온라인 개방코드 OSCILOS를 이용한 모델 희박 예혼합 가스터빈 연소기의 연소불안정 해석 사례)

  • Cha, Dong Jin;Song, Jin Kwan;Lee, Jong Geun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.10-18
    • /
    • 2015
  • Combustion instability is a major issue in design and maintenance of gas turbine combustors for efficient operation with low emissions. With the thermoacoustic view point the instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to study the combustion dynamics of gas turbine combustors, Morgans et al (2014) have developed OSCILOS (open source combustion instability low order simulator) code and it is currently available online. In this study the code has been utilized to predict the combustion instability of a reported case for lean premixed gas turbine combustion, and then its prediction results have been compared with the corresponding experimental data. It turned out that both the predicted and the experimental combustion instability results agree well. Further the effects of some typical inlet acoustic boundary conditions on the prediction have been investigated briefly. It is believed that the validity and effectiveness of the open source code is reconfirmed through this benchmark test.

Influence of cavity geometry on combustion characteristics and particulate in D.I. diesel engine (직분식 디젤기관에서 Cavity형상이 연소특성과 배출미립자에 미치는 영향)

  • 이상석;김희년;하종률
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.40-47
    • /
    • 1990
  • The combustion chamber geometry, especially cavity geometry have an effect on the air-fuel mixture process, gas flow in cylinder and combustion itself. There types of piston cavity model were compared in order to investigate with the effect of cavity geometry on combustion characteristics, engine performance and exhaust gas emission; as the results Reflex type has superior performance compared with the other cavity types.

  • PDF

New technology for doped Fe alloys production

  • Ksandopoulo, G.;Korobova, N.;Baydeldinova, A.;Isaykina, O.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.274-277
    • /
    • 2000
  • SHS is recognized as an attractive process for producing high-temperature, hard materials that difficult and/or expensive to produce by conventional fabrication methods. The goal of this work is to investigate new express technology of doped Fe alloys materials. The high density, homogeneity of the components, and the low processing temperatures achieved and minimum synthesis time are all of paramount importance in fabricating Fe alloys as functional materials.

  • PDF

Mixed combustion expert system for General Manager at Thermal Power Plant (저열량탄 혼소 전문가시스템 구현 방안)

  • Kim, Hae-Soon;Kim, Sun-Ic;Joo, Yong-Jae;Kim, Ji-Hyun;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1374-1375
    • /
    • 2011
  • Mixed combustion expert system is implemented to prevent various problems in combustion process by increasing rate of mixing low calorific value coal to reduce costs. This system shows optimal coal mixture rate by interfacing CBS(Coal Blending Screener, Implementing slagging and fouling factors by coal characteristic and algorithm), SGE(Stream Generate Expert, Combustion process model) and CFS(Configured Fireside Simulator, Computational fluid dynamics).

  • PDF

A Study on Relationship between Ignition Systems and the Performances of Gasoline Engines (I) (점화시스템의 종류와 가솔린 엔진 성능과의 상관관계에 대한 연구 (I))

  • SunWoo, Myoung-Ho;Song, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.966-969
    • /
    • 1998
  • Fast burning achieves higher efficiency, and reduces cycle variations which is able to improve vehicle driveability. Furthermore, the greater resistance to knock with fast burning can allow the fuel economy advantages associated with higher compression ratio to be realized. One way of increasing the combustion speed is to enhance the performance of ignition systems which were able to reduce the early period of combustion. It is well known that shortening the initial stage of combustion also reduces the cyclic variations. This literature survey deals with the papers which have studied the ignition process or various ignition systems. Those systems increasing the combustion speed, extending the lean misfire limit, reducing the exhaust gas and stabilizing the operating condition of the spark ignition engine by modifying the ignition process or increasing ignition energy.

  • PDF