• Title/Summary/Keyword: combined systems

Search Result 2,637, Processing Time 0.031 seconds

Secure large-scale E-voting system based on blockchain contract using a hybrid consensus model combined with sharding

  • Abuidris, Yousif;Kumar, Rajesh;Yang, Ting;Onginjo, Joseph
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.357-370
    • /
    • 2021
  • The evolution of blockchain-based systems has enabled researchers to develop nextgeneration e-voting systems. However, the classical consensus method of blockchain, that is, Proof-of-Work, as implemented in Bitcoin, has a significant impact on energy consumption and compromises the scalability, efficiency, and latency of the system. In this paper, we propose a hybrid consensus model (PSC-Bchain) composed of Proof of Credibility and Proof of Stake that work mutually to address the aforementioned problems to secure e-voting systems. Smart contracts are used to provide a trustworthy public bulletin board and a secure computing environment to ensure the accuracy of the ballot outcome. We combine a sharding mechanism with the PSC-Bchain hybrid approach to emphasize security, thus enhancing the scalability and performance of the blockchain-based e-voting system. Furthermore, we compare and discuss the execution of attacks on the classical blockchain and our proposed hybrid blockchain, and analyze the security. Our experiments yielded new observations on the overall security, performance, and scalability of blockchain-based e-voting systems.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation

  • Mai, Hang-Nga;Hong, Su-Hyung;Kim, Sung-Hun;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the effects of various protocols and systems for finishing and polishing monolithic zirconia on surface topography, phase transformation, and bacterial adhesion. MATERIALS AND METHODS. Three hundred monolithic zirconia specimens were fabricated and then treated with three finishing and polishing systems (Jota [JO], Meisinger [ME], and Edenta [ED]) using four surface treatment protocols: coarse finishing alone (C); coarse finishing and medium polishing (CM); coarse finishing and fine polishing (CF); and coarse finishing, medium polishing, and fine polishing (CMF). Surface roughness, crystal phase transformation, and bacterial adhesion were evaluated using atomic force microscopy, X-ray diffraction, and streptococcal biofilm formation assay, respectively. One-way and two-way analysis of variance with Tukey post hoc tests were used to analyze the results (${\alpha}=.05$). RESULTS. In this study, the surface treatment protocols and systems had significant effects on the resulting roughness. The CMF protocol produced the lowest roughness values, followed by CM and CF. Use of the JO system produced the lowest roughness values and the smallest biofilm mass, while the ME system produced the smallest partial transformation ratio. The ED group exhibited the highest roughness values, biofilm mass, and partial transformation ratio. CONCLUSION. Stepwise surface treatment of monolithic zirconia, combined with careful polishing system selection, is essential to obtaining optimal microstructural and biological surface results.

Climate Resilience Assessment of Agricultural Water System Using System Dynamics Model (시스템다이내믹스 모델을 이용한 농업용수 시스템의 기후 복원력 평가)

  • Choi, Eunhyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.65-86
    • /
    • 2021
  • This study aims at testing a hypothesis that the resilience of agricultural water systems is characterized by trade-offs and synergies of effects from climate and socioeconomic change. To achieve this, an Agricultural Water System Climate Resilience Assessment (ACRA) framework is established to evaluate comprehensive resilience of an agricultural water system to the combined impacts of the climate and socioeconomic changes with a case study in South Korea. Understanding dynamic behaviors of the agricultural water systems under climate and socioeconomic drivers is not straightforward because the system structure includes complex interactions with multiple feedbacks across components in water and agriculture sectors and climate and socioeconomic factors, which has not been well addressed in the existing decision support models. No consideration of the complex interactions with feedbacks in a decision making process may lead to counterintuitive and untoward evaluation of the coupled impacts of the climate and socioeconomic changes on the system performance. In this regard, the ACRA framework employs a System Dynamics (SD) approach that has been widely used to understand dynamics of the complex systems with the feedback interactions. In the ACRA framework applied to the case study in South Korea, the SD model works along with HOMWRS simulation. The ACRA framework will help to explore resilience-based strategies with infrastructure investment and management options for agricultural water systems.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems

  • Jongwon Kim;Eunbi Park;Sungyoon Cho;Kiwon Kwon;Young Myoung Ko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2259-2277
    • /
    • 2023
  • We propose a probabilistic fish growth model for smart aquaculture systems equipped with IoT sensors that monitor the ecological environment. As IoT sensors permeate into smart aquaculture systems, environmental data such as oxygen level and temperature are collected frequently and automatically. However, there still exists data on fish weight, tank allocation, and other factors that are collected less frequently and manually by human workers due to technological limitations. Unlike sensor data, human-collected data are hard to obtain and are prone to poor quality due to missing data and reading errors. In a situation where different types of data are mixed, it becomes challenging to develop an effective fish growth model. This study explores the unique characteristics of such a combined environmental and weight dataset. To address these characteristics, we develop a preprocessing method and a probabilistic fish growth model using mixed data sampling (MIDAS) and overlapping mixtures of Gaussian processes (OMGP). We modify the OMGP to be applicable to prediction by setting a proper prior distribution that utilizes the characteristic that the ratio of fish groups does not significantly change as they grow. We conduct a numerical study using the eel dataset collected from a real smart aquaculture system, which reveals the promising performance of our model.

Analysis of operation performance of PHILS-based superconducting current limiter connected to MVDC system

  • Seok-Ju Lee;Jae In Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • In this paper, we analyze experimental results by applying the PHILS model to a lab-scale superconducting current limiter system for its actual application in medium-voltage direct current (MVDC) systems. Superconducting current limiters exhibit effective current-limiting performance in circuit breaker operations, particularly in limiting large fault currents within a short period, addressing the challenges posed by the increasing use of renewable energy and the integration of DC medium-voltage distribution systems. The development of such superconducting current limiters faces various technical and cost disadvantages, especially when applying a medium-voltage 35kV level system, which is intended for future introduction. The proven lab-scale superconducting current limiter system and the PHILS model are combined and integrated into the actual system. Our plan involves analyzing the limiter's performance, assessing its impact on the system, and preparing for its application in future medium-voltage systems. Utilizing RTDS, a simulation was conducted by connecting actual scaled-down equipment and systems, with the analysis results presented.

An Efficient AMC Schemes for Mobile Satellite Communication Systems based on LTE (LTE 기반 이동 위성통신 시스템에서의 효율적인 AMC 방식)

  • Yeo, Sung-Moon;Hong, Tae-Chul;Kim, Soo-Young;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2010
  • In future mobile networks, hybrid/integrated satellite and terrestrial systems will play an important role. Most of the mobile communication systems are focused on the terrestrial systems, in this case, compatibilities between the satellite and terrestrial systems are very important for efficiency of the systems. Terrestrial systems of all the 4G mobile communication adopted the adaptive modulation and coding (AMC) schemes for efficient usage of resources, and the updating interval of resource allocation in an order of msec. However, because of the long round trip delay of satellite systems, we cannot employ the same AMC scheme specified for the terrestrial system, and thus it cannot effectively counteract to short term fadings. In the paper, we propose the method to apply AMC to mobile satellite systems. In addition, in order to effectively counteract to short term fadings, we present the simulation results of the AMC combined with an interleaver.

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation (GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증)

  • Sohn, Dong Hyo;Park, Kwan Dong;Kim, Yeon Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.95-100
    • /
    • 2013
  • Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.