• Title/Summary/Keyword: combined systems

Search Result 2,639, Processing Time 0.034 seconds

The Design of Knowledge-Emotional Reaction Model considering Personality (개인성을 고려한 지식-감정 반응 모델의 설계)

  • Shim, Jeong-Yon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • As the importance of HCI(Human-Computer Interface) caused by dramatically developed computer technology is getting high, the requirement for the design of human friendly systems is also getting high. First of all, the personality and Emotional factor should be considered for implementing more human friendly systems. Many studies on Knowledge, Emotion and personality have been made, but the combined methods connecting these three factors is not so many investigated yet. It is known that memorizing process includes not only knowledge but also the emotion and the emotion state has much effects on the process of reasoning and decision making step. Accordingly, for implementing more human friendly efficient sophisticated intelligent system, the system considering these three factors should be modeled and designed. In this paper, knowledge-emotion reaction model was designed. Five types are defined for representing the personality and emotion reaction mechanism calculating emotion vector based on the extracted Thought threads by Type matching selection was proposed. This system is applied to the virtual memory and its emotional reactions are simulated.

Study of Power Output Characteristics of Wave Energy Conversion System According to Turbine Installation Method Combined with Breakwater (방파제 부착형 파력발전시스템의 터빈설치 방법에 따른 출력특성에 관한 연구)

  • Lee, HunSeok;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.317-321
    • /
    • 2015
  • Many kinds of generation systems have been developed to use ocean energy. Among these, with the use of an oscillating water column (OWC) for power generation is attracting attention. The OWC-type wave power generation system converts wave energy into electricity by operating a generator turbine with the oscillating water level in a column of water. There are two ways to convert wave power into electricity using an OWC. One uses a cross-flow turbine using the water level inside the OWC. The other method uses the flow of air in a Wells turbine, which depends on the water level. An experiment was carried out using a 2-D wave tank in order to minimize the number of empirical tests. The design factors were taken from Koo et al. (2012) and the experimental environment assumed by free surface motion. This paper deals with characteristics of two types of wave energy conversion systems combine with a breakwater. One model uses an air-driven Wells turbine and a cross-flow water turbine. The other type uses a cross-flow water turbine. Wave energy converters with OWCs have mostly been studied using air-driven Wells turbines. The efficiency of the cross-flow turbine was about 15% higher than that of the other model, and the water level of the OWC internal chamber for the cross-flow water turbine and air-driven Wells turbine was less than about 40% lower than the one using only the cross-flow water turbine.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.

Design of an Optimal Controller with Neural Networks for Nonminimum Phase Systems (신경 회로망을 이용한 비최소 위상 시스템의 최적 제어기 설계)

  • 박상봉;박철훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.56-66
    • /
    • 1998
  • This paper investigates a neuro-controller combined in parallel with a conventional linear controller of PID type in order to control nonminimum phase systems more efficiently. The objective is to minimize overall position errors as well as to maintain small undershooting. A costfunction is proposed with two conflict objectives. The neuro-controller is trained off-line with evolutionary programming(EP) in such a way that it becomes optimal by minimizing the given cost function through global evaluation based on desired control performance during the whole training time interval. However, it is not easy to find an optimal solution which satisfies individual objective simultaneously. With the concept of Pareto optimality and EP, we train the proposed controller more effectively and obtain a valuable set of optimal solutions. Simulation results show the efficacy of the proposed controller in a viewpoint of improvement of performance of a step response like fast settling time and small undershoot or overshoot compared with that of a conventional linear controller.

  • PDF

Photo-sensorless dual-axis solar tracking system combined with IoT platform (IoT플랫폼이 결합된 광센서가 없는 태양광 추적 시스템)

  • Jung, Deok-Kyeom;Jeon, Jong-Woon;Park, Sung-Min;Chung, Gyo-Bum
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.664-671
    • /
    • 2018
  • Generally, conventional solar tracking systems employ irradiance sensors to track a sun position, which enables the system to generate maximum solar energy. The usage of irradiance sensors increases system costs and deteriorates the performance of systems from sensor malfunctions. In this paper, a new solar tracking system without irradiance sensors has been proposed in which the controller capable of controlling and monitoring remotely is based on Artik platform. The proposed system tracks the sun position by comparing the amount of currents from several solar panels, resulting in removing irradiance sensors. In order to verify the performance of the proposed solar tracking method, the 12[V]-20[W] prototype system is built and implemented. Since the proposed system has remote monitoring functions through the employment of Artik as the IoT platform, more advantages in installation, maintenance and expanded functionality can be obtained compared to the conventional solar tracking system.

Size Optimization of a Rod Using Frequency Response Functions of Substructures (부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.905-913
    • /
    • 2017
  • In this work, a method of size optimization is proposed to maximize the natural frequency of a rod that consists of a hidden shape in one part and an exposed shape in the other. The frequency response function of a rod composed of two parts is predicted by using the frequency response functions of each of the parts instead of the shapes of the parts. The mass and stiffness matrices of the rod are obtained by using the mass and stiffness matrices of the equivalent vibration systems, which are obtained by applying the experimental modal analysis method to the frequency response functions of the parts. Through several numerical examples, the frequency response function obtained by using the proposed method is compared with that of a rod to validate the prediction method based on equivalent vibration systems. A size optimization problem is formulated for maximizing the first natural frequency of a combined rod, which is replaced with an equivalent vibration system, and a rod structure is optimized by using an optimization algorithm.

An Automated Technique for Detecting Axon Structure in Time-Lapse Neural Image Sequence (시간 경과 신경계 영상 시퀀스에서의 축삭돌기 추출 기법)

  • Kim, Nak Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The purpose of the neural image analysis is to trace the velocities and the directions of moving mitochondria migrating through axons. This paper proposes an automated technique for detecting axon structure. Previously, the detection process has been carried out using a partially automated technique combined with some human intervention. In our algorithm, a consolidated image is built by taking the maximum intensity value on the all image frames at each pixel Axon detection is performed through vessel enhancement filtering followed by a peak detection procedure. In order to remove errors contained in ridge points, a filtering process is devised using a local reliability measure. Experiments have been performed using real neural image sequences and ground truth data extracted manually. It has been turned out that the proposed algorithm results in high detection rate and precision.

The Structural Relationships among Information Security Threat Factors and Information Protection Behavior of the FinTech Services: Focus on Theoretical Perspectives of Technology Threat Avoidance and Health Protective Behaviors (핀테크(FinTech) 서비스의 정보보안 위협요인과 개인정보보호행위와의 구조적 관계에 관한 연구: 기술위협회피와 건강행동이론 관점에서)

  • Bae, Jae Kwon
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.313-337
    • /
    • 2017
  • Purpose Financial technology, also known as FinTech, is conceptually defined as a new type of financial service which is combined with information technology and other traditional financial services like payments, investments, financing, insurance, asset management and so on. Most of the studies on FinTech services have been conducted from the viewpoint of technical issues or legal and institutional studies, and few studies are conducted from the health belief perspectives and security behavior approaches. In this regard, this study suggest an extended information protection behavior model. Design/Methodology/Approach The Health Belief Model (HBM), the Protection Motivation Theory (PMT), and the Technology Threat Avoidance Theory (TTAT) were employed to identify constructs relevant to information protection behavior of FinTech services. A new extended information protection behavior model in which the influence factors of information protection behavior (i.e., perceived susceptibility, perceived severity, perceived benefits, perceived barriers, perceived self-efficacy, subjective norms) affect perceived threats and perceived responsiveness positively, leading to information protection behavior of FinTech users eventually. This study developed an extended information protection behavior model to explain the protection behavior intention in FinTech users and collected 272 survey responses from the mobile users who had experiences with such mobile payments and FinTech services. Findings The finding of this study suggests that the influence factors of information protection behavior affect perceived threats and perceived responsiveness positively, and information protection behavior of FinTech users as well.

A Recommender System Model Combining Collaborative filtering and SOM Neural Networks (협동적 필터링과 SOM 신경망을 결합한 추천시스템 모델)

  • Lee, Mi-Hee;Woo, Young-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1213-1226
    • /
    • 2008
  • A recommender system supports people in making recommendations finding a set of people who are likely to provide good recommendations for a given person, or deriving recommendations from implicit behavior such as browsing activity, buying patterns, and time on task. We proposed new recommender system which combined SOM(Self-Organizing Map) neural networks with the Collaborative filtering which most recommender systems hat applied First, we segmented user groups according to demographic characteristics and then we trained the SOM with people's preferences as ito inputs. Finally we applied the classic collaborative filtering to the clustering with similarity in which an recommendation seeker belonged to, and therefore we didn't have to apply the collaborative filtering to the whose data set. Experiments were run for EachMovies data set. The results indicated that the predictive accuracy was increased in terms of MAE(Mean-Absolute-Error).

  • PDF

The Calculation of the Exact BER of UWB-TH BPSK Communication systems with the Multiple User Interference (다중 사용자 간섭을 고려한 TH-BPSK UWB 통신 시스템의 정확한 BER 계산)

  • Park, Jang-Woo;Choi, Yong-Seok;Cho, Kyung-Ryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.951-957
    • /
    • 2005
  • The bit error probability of UWB Time-Hopping(TH) multiple access communication systems combined with BPSK is calculated with a high accuracy including the multiple user interference(MUI). This paper finds that with some manipulations, the TH-BPSK UWB signal can be modified to the similar form of the DS-CDMA signal. The MUI in the system is explained by the characteristic function technique. Above two descriptions have been bases on the derivation of the exact BER expression of the system. We also propose the approximate expression for the BER, which has enough accuracy compared with the expression from the Gaussian approximation of the MUI. The comparison of the results from the proposed expressions with the simulation results gives the confirmation for the validity and accuracy of the proposed expressions.