DOI QR코드

DOI QR Code

Photo-sensorless dual-axis solar tracking system combined with IoT platform

IoT플랫폼이 결합된 광센서가 없는 태양광 추적 시스템

  • Jung, Deok-Kyeom (Dept. of Electronic & Electrical Engineering, Hongik University) ;
  • Jeon, Jong-Woon (Dept. of Electronic & Electrical Engineering, Hongik University) ;
  • Park, Sung-Min (Dept. of Electronic & Electrical Engineering, Hongik University) ;
  • Chung, Gyo-Bum (Dept. of Electronic & Electrical Engineering, Hongik University)
  • Received : 2018.09.05
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

Generally, conventional solar tracking systems employ irradiance sensors to track a sun position, which enables the system to generate maximum solar energy. The usage of irradiance sensors increases system costs and deteriorates the performance of systems from sensor malfunctions. In this paper, a new solar tracking system without irradiance sensors has been proposed in which the controller capable of controlling and monitoring remotely is based on Artik platform. The proposed system tracks the sun position by comparing the amount of currents from several solar panels, resulting in removing irradiance sensors. In order to verify the performance of the proposed solar tracking method, the 12[V]-20[W] prototype system is built and implemented. Since the proposed system has remote monitoring functions through the employment of Artik as the IoT platform, more advantages in installation, maintenance and expanded functionality can be obtained compared to the conventional solar tracking system.

일반적으로 감지식 태양광 추적 시스템은 태양의 위치를 추적하기 위해 광센서를 사용하여, 최대 전력을 생산한다. 광센서 채택은 시스템 제작 가격을 상승시키고, 오동작에 의한 성능 저하를 초래할 수 있다. 본 논문에서는 IoT플랫폼 기반의 원격무선 모니터링이 가능하고, 광센서가 없는 새로운 태양광 추적 시스템을 제안한다. 태양광 발전을 위해 사용되는 여러 개의 태양광 패널의 출력 전류량을 비교하여 태양 위치를 광센서 없이 추적한다. 추적 성능의 검증을 위해서 12[V] 20[W] 태양광 발전 시스템을 제작하여 실험을 수행하였다. 본 논문에서 제안한 시스템은 IoT 플랫폼을 사용하여 원격모니터링이 가능하기 때문에 기존 태양광 추적 시스템에 비해 설치, 유지 보수 및 기능 확장의 장점이 있다.

Keywords

References

  1. Oh. Sekyung, Ihm. Pyeongchan, Lee. Kyung-Hee, “Optimal electric generation for fixed-type photovoltaic system installed for residential building in korea,” GRI review, Vol. 14, No. 2, pp. 271-288, August 2012.
  2. Heo Changsu, Jung Chunbyeong, Seo Yujin, Kang Taeeun, Design and Construction Technology of Photovoltaic System, GS Intervision, 2014.
  3. Jong-Woon Jeon, Yeong-Hyun Kim, Tae-Gyun Kim, Deok-Kyeom Jung, Sung-Min Park and Gyo-Bum Chung, "Photo-sensorless dual-axis PV tracking system," 2017 Power Electronics Annual Conference, November 2009, pp. 87-88.
  4. Kianoosh Azizi, Ali Ghaffari, "Design and manufacturing of high-precision sun tracking system based on image processing," International journal of photoenergy, Vol. 2013, August 2013. DOI:10.1155/2013/754549
  5. PARU Inc. "Introducing Photovoltaic Tracker," http://m.paru.co.kr/Sun/Structure/
  6. Mi-Geum Jang, Jae-Sub Ko, Jung-Sik Choi, Jung-Woo Back, Sung-Jun Kang, Dong-Hwa Chung, "Comparison study of PV tracking system with sensor and program method," 2009 KIEE conference on Electrical Equipment and Energy Conversion Systems, April 2009, pp. 222-224.
  7. Hae-Min Jung, Bo-Ra Min, Chul-Hwan Kim, "Characteristic analysis on photovoltaic solar panels of the power engineering lab using characteristic curve of photovoltaic," 2013 Summer conference of the korean institute of electrical engineers, July 2013, pp. 69-70.