DOI QR코드

DOI QR Code

Size Optimization of a Rod Using Frequency Response Functions of Substructures

부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화

  • Received : 2017.02.10
  • Accepted : 2017.08.11
  • Published : 2017.10.01

Abstract

In this work, a method of size optimization is proposed to maximize the natural frequency of a rod that consists of a hidden shape in one part and an exposed shape in the other. The frequency response function of a rod composed of two parts is predicted by using the frequency response functions of each of the parts instead of the shapes of the parts. The mass and stiffness matrices of the rod are obtained by using the mass and stiffness matrices of the equivalent vibration systems, which are obtained by applying the experimental modal analysis method to the frequency response functions of the parts. Through several numerical examples, the frequency response function obtained by using the proposed method is compared with that of a rod to validate the prediction method based on equivalent vibration systems. A size optimization problem is formulated for maximizing the first natural frequency of a combined rod, which is replaced with an equivalent vibration system, and a rod structure is optimized by using an optimization algorithm.

본 연구에서는 형상 정보가 주어지지 않은 부품과 형상 정보가 주어진 부품으로 구성된 봉의 고유 주파수를 최대화하는 치수 최적화 방법을 제시한다. 두 부품으로 구성된 봉의 진동 특성을, 각 부품의 형상 대신, 두 부품의 주파수 응답 함수들로부터 예측한다. 이를 위해, 실험 모달 해석 방법을 이용하여 각 부품의 등가 진동계를 구하고, 두 등가 진동계의 질량 행렬과 강성 행렬들로부터, 두 부품이 결합된 봉의 등가 질량 행렬과 강성 행렬을 도출한다. 몇 가지 수치 예제에서, 제시한 방법으로 얻어진 봉의 등가 진동계의 주파수 응답 함수를 실제 봉의 주파수 응답 함수와 비교하여, 등가 진동계를 이용한 고유 주파수 예측 방법의 유효성을 검증한다. 검증된 방법으로 얻어진 등가 진동계를 이용하여, 봉의 1차 고유 주파수를 최대화하기 위한 치수 최적화 문제를 정식화하고, 최적화 알고리즘을 사용하여 봉의 구조를 최적화한다.

Keywords

References

  1. Hurty, W. C., 1960, "Vibrations of Structural Systems by Component Mode Synthesis," J. Eng Mech. Div-ASCE, Vol. 86, No. 4, pp. 51-70.
  2. Craig Jr, R. R. and Bampton, M. C., 1968, "Coupling of Substructures for Dynamic Analyses," AIAA J., Vol. 6, No. 7, pp. 1313-1319. https://doi.org/10.2514/3.4741
  3. Oh, J. E., Lee, J. H. and Lim, D. K., 1994, "A Study on the Identification and Improvement of Dynamic Characteristics of Large Structure by Component Mode Synthesis Method," Trans. Korean Soc. Noise Vib., Vol. 4, No. 3, pp. 327-335.
  4. Kim, B. S., Kim, B. S. and Yoo, H. H., 2010, "Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 519-525. https://doi.org/10.3795/KSME-A.2010.34.5.519
  5. Choi, W. H., Na, Y. S. and Park, G. J., 2015, "Structural Optimization Using Equivalent Static Loads and Substructure Synthesis Method," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 8, pp. 823-830. https://doi.org/10.3795/KSME-A.2015.39.8.823
  6. Tsai, J. S. and Chou, Y. F., 1988, "The identification of Dynamic Characteristics of a Single Bolt Joint," J Sound Vib., Vol. 125, No. 3, pp. 487-502. https://doi.org/10.1016/0022-460X(88)90256-8
  7. Yang, T., Fan, S. H. and Lin, C. S., 2003, "Joint Stiffness Identification Using FRF Measurements," Comput. Struct., Vol. 81, No. 28-29, pp. 2549-2556. https://doi.org/10.1016/S0045-7949(03)00328-6
  8. Klerk, D. D., and Rixen, D. J. and Voormeeren, S. N., 2008, "General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques," AIAA J., Vol. 46, No. 5, pp. 1169-1181. https://doi.org/10.2514/1.33274
  9. Craig, R. R. and Kurdila, A. J., 2006, Fundamentals of Structural Dynamics, John Wiley & Sons, New Jersey.
  10. Maia, N. M. M. and Silva, J. M. M., 1997, Theoretical and Experimental Modal Analysis, Research Studies Press LTD., England.
  11. Heylen, W., Lammens, S. and Sas P., 1995, Modal Analysis Theory and Testing, Department Werktuigkunde, Katholieke Universteit Leuven.
  12. Ewins, D. J., 2000, Modal Testing: Theory, Practice and Application, Research Studies Press LTD., England.
  13. McConnell, K. G., 1995, Vibration Testing: Theory and Practice, John Wiley & Sons, New York.
  14. Allen, M. S., Mayes, R. L. and Bergman, E. J., 2010, "Experimental Modal Substructuring to Couple and Uncouple Substructures with Flexible Fixtures and Multi-Point Connections," J Sound Vib, Vol. 329, No. 23, pp. 4891-4906. https://doi.org/10.1016/j.jsv.2010.06.007
  15. Meirovitch, L., 2001, Fundamentals of vibrations, McGraw-Hill, New York.
  16. Svanberg, K., 1987, "The Method of Moving Asymptotes- a New Method for Structural Optimization," Int. J. Numer. Meth. Eng., Vol. 24, No. 2, pp. 359-373. https://doi.org/10.1002/nme.1620240207