• Title/Summary/Keyword: column-beam connection

검색결과 499건 처리시간 0.026초

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

Cyclic behaviour of infilled steel frames with different beam-to-column connection types

  • Sakr, Mohammed A.;Eladly, Mohammed M.;Khalifa, Tarek;El-Khoriby, Saher
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.443-456
    • /
    • 2019
  • Although numerous researchers demonstrated the significant difference in performance between the various beam-to-column connection types, most of the previous studies in the area of infilled steel frames focused on the behaviour of frames with welded connections. Therefore, there is a need for conducting studies on infilled steel frames with other common connection types (extended endplate with and without rib stiffeners, flush endplate and shear connections). In this paper, firstly, a two-dimensional finite-element model simulating the cyclic response of infilled steel frames was presented. The infill-frame interaction, as well as the interactions between connections' components, were properly modelled. Using the previously-validated model, a parametric study on infilled steel frames with five different beam-to-column connection types, under cyclic loading, was carried out. Several parameters, including infill material, fracture energy of masonry and infill thickness, were investigated. The results showed that the infilled frames with welded connections had the highest initial stiffness and load-carrying capacity. However, the infilled frames with extended endplate connections (without rib stiffeners) showed the greatest energy dissipation capacity and about 96% of the load-carrying capacity of frames with welded connections which indicates that this type of connection could have the best performance among the studied connection types. Finally, a simplified analytical model for estimating the stiffness and strength of infilled steel frames (with different beam-to-column connection types) subjected to lateral cyclic loading, was suggested.

철근 콘크리트 기둥과 철골보의 합성구조 접합부 성능에 관한 연구 (Structural Behavior of Reinforced Concrete column and Steel beam Joints)

  • 이원규;신동대;송진규;정혜교;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.575-578
    • /
    • 1999
  • The main objective of this study was to examine structural behavior of reinforced concrete column and steel beam joint. composite specimens about 3/4 of the actual beam column connection assembly were tested by applying cyclic load through actuators. Test variables include face bearing plate(FBP), extended face bearing plate(E-FBP), VIR, U-bar and sub beam. There is not much differenced between specimens with sub beam and without sub beam. Test results also show that the joint strength of test specimen is close to the predicted strength by ASCE guideline.

  • PDF

신형상 메카니컬패스너를 사용한 엔드플레이트 형식 보-기둥 접합부의 변형성능 (Deformation Capacity of Endplate-type Beam-to-Column Connection with New Type Mechanical Fasteners)

  • 이승재
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.123-130
    • /
    • 2006
  • 본 연구에서는 기존의 고력볼트의 축부절삭 가공방법을 이용한 신형상 메카니컬패스너를 개발하였다. 개발된 신형상 메카니컬패스너를 엔드플레이트 형식의 보-기둥 접합부에 적용하여 변형능력 및 강도특성에 대한 재하실험 및 유한요소법에 의한 수치해석을 수행하였다.

  • PDF

철근 콘크리트 기둥과 철골 보 접합부의 거동 평가틀 위한 해석적 연구 (The Analytical Study on the Structural Performance of Beam-Column Connections of RC Column and Steel Beam)

  • 홍성헌;한상환;류천;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.110-116
    • /
    • 1998
  • The three-dimensional nonlinear analysis on the partial tension experiment of Beam-Column connections in hybrid connections with RC columns and S beams is simulated. In this paper, mechanical characteristics between steel plates and concrete is investigated. Also the stress transfer mechanism prior to beam-column connection analysis was considered by using joint element.

  • PDF

고장력 철근이 적용된 철근콘크리트 보-기둥 접합부 파괴모드에 대한 실험적 연구 (Experimental Study on Seismic Performance of Beam-column Connections with High Strength Reinforcements)

  • 김대훈;박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.61-68
    • /
    • 2016
  • Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix II. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.

증축된 건축물의 SRC 기둥과 철골보 접합부 손상에 관한 연구 (A Study about Damage of Steel Beam to SRC Column Connection in a New Extension Building)

  • 심학보;박순전
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.503-504
    • /
    • 2009
  • 오늘날 증축된 건축물의 기존 SRC 기둥과 신설 철골보로 연결된 구간에 대한 접합부의 안전성에 대한 검토의 필요성이 증대되고 있다. 본 논문에서는 SRC 기둥과 철골보의 접합부 손상에 대해 조사하고 이에 대한 원인을 분석하여 건물의 붕괴 방지 및 수명연장을 도모하고자 한다.

  • PDF

지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가 (Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness)

  • 김수정;최병정;박호영;이진우
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns

  • Rezaifar, Omid;Younesi, Adel
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.73-91
    • /
    • 2016
  • The use of box columns has been increased due to the rigidity in rigid orthogonal moment resisting frames. On the other hand, the installation and welding of necessary horizontal continuity plates inside the columns are both labor-consuming and costly tasks. Accordingly, in this paper, a new beam-to-box column connection by trapezoidal external stiffeners and horizontal bar mats is presented to provide seismic parameters. The proposed connection consists of eight external stiffeners in the level of beam flanges and five horizontal bar mats in Concrete Filled Tube (CFT) columns. The new connection effectively alleviates the stress concentration and moves the plastic hinge away from the column face by horizontal external stiffeners. In addition, the result shows that proposed connection has provided the required strength and rigidity of connection, so that the increased strength, 8.08% and rigidity, 3.01% are compared to connection with internal continuity plates, also the results indicate that this connection can offer appropriate ductility and energy dissipation capacity for its potential application in moment resisting frames in seismic region. As a result, the proposed connection can be a good alternative for connection with continuity plates.

합성 PC부재의 Steel-joint Connection Method 개발 기초연구 (A basic study of steel-joint connection method of composite precast concrete members)

  • 김근호;이동훈;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF