• 제목/요약/키워드: column effective length

검색결과 107건 처리시간 0.031초

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

확장계수를 적응한 기둥의 유효좌굴길이 계수 산정 (Evaluation of Effective Length Factor by Using an Amplification Factor)

  • 최동호;유훈;신재인;김성연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.369-374
    • /
    • 2007
  • For a stability design of steel frames, AISC-LRFD specification recommend to use Alignment Chart and story-based methods in order to determine an effective budding length. Recently, elastic buckling analysis, which is the method that calculate the effective length of members using eigenvalue of the overall structure, has been widely used in practical design of steel frames because this method can be performed effectively and automatically by computers. However, it can in some cases lead to unexpectedly large effective length in column having small axial forces. Therefore, this paper propose a method using elastic buckling analysis, which estimate a proper effective buckling length for all members having a small axial force. For verification of proposed method, it is compared with system based approach and stiffness distribution factor method. As a result, proposed method can rationally solve a problem in some case of column having small axial force. Also, adoption range for proposed method is established.

  • PDF

유한요소해석에서 탄성 및 비탄성 기둥에 대한 유효길이 계수의 자동산정 (Automatic Generation of Effective Length Factor of Elastic and Inelastic Column in the Finite Element Analysis)

  • 이성우;이선구;이형우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.24-31
    • /
    • 1993
  • In the design of column, computation of effective length factor for calculation of allowable compressive stress is inevitable. In this study. computer code which automatically generates effective length factor in the finite element analysis is developed. The program is developed to be used for orthogonal and nonorthogonal frame structure. Some i1lustrative examples verify that the computation results we correct for various cases.

  • PDF

골조구성 변단면 기둥의 유효길이 계수 (Effective length factors for the framed columns with variable stiffness)

  • 이수곤;김순철;오금열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF

전단벽의 내진보강을 위한 방법에 관한 연구 (Retrofitting Device to Increase Seismic Resistant Capactiy of Shear Walls)

  • 홍성걸;이지형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.25-28
    • /
    • 2005
  • The elastic buckling load or strength of a concentrically loaded slender metal column may be increased many times by reinforcing it with an assemblage of pretensioned stays and rigidity connected crossarm members. The complete system is herein referred to as a 'stayed column'. The purpose of the pretensioned stays and crossarm members is to introduce, at several points along the length of the column, restraint against translation and rotation and thereby decrease the effective unsupported buckling length of the column. This paper verifies that pretensioned cable of stayed column is effective for cyclic load and increases strength of shear wall against earthquake by reinforcing side of wall. Design process of stayed column which satisfies demanded capacity and ductility of wall is presented by analyzing result of experiment.

  • PDF

Storey-based stability analysis of multi-storey unbraced frames

  • Liu, Y.;Xu, L.
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.679-705
    • /
    • 2005
  • This paper presents a practical method to evaluate the effective length factors for columns in multi-storey unbraced frames based on the concept of storey-based elastic buckling by means of decomposing a multi-storey frame into a series of single-storey partially-restrained (PR) frames. The lateral stiffness of the multi-storey unbraced frame is derived and expressed as the product of the lateral stiffness of each storey. Thus, the stability analysis for the multi-storey frame is conducted by investigating the lateral stability of each individual storey, which is facilitated through decomposing the multi-storey frame into a series of single-storey PR frames and applying the storey-based stability analysis proposed by the authors (Xu and Liu 2002) for each single-storey PR frame. Prior to introducing decomposition approaches, the end rotational stiffness of an axially load column is derived and rotational stiffness interaction between the upper and lower columns is investigated. Three decomposition approaches, characterized by means of distributing beam-to-column rotational-restraining stiffness between the upper and lower columns, are proposed. The procedure of calculating storey-based column effective length factors is presented. Numerical examples are then given to illustrate the effectiveness of the proposed procedure.

탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이 (Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis)

  • 송주영;경용수;김문영
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.169-179
    • /
    • 2005
  • 탄성 및 비탄성좌굴 고유치해석법을 이용하여 강절프레임의 보-기둥부재의 유효좌굴길이를 산정하는 개선된 방법을 제시한다. 이를 위하여 먼저 설계기준에 제시된 압축재의 내하력 곡선식으로부터 접선계수이론(tangent modulus theory)에 근거하여 세장비-접선계수(tangent modulus), 응력-변형률 곡선식을 유도한다. 이때 안정함수를 이용하여 보-기둥요소의 접선강성행렬을 얻고, 비탄성 좌굴 고유치해석법을 제시하며 이를 이용하여 유효좌굴길이를 산정하는 방법을 제시한다. 해석예제를 통하여 강절프레임에 탄성 및 비탄성좌굴해석법에 의한 유효좌굴길이 비교결과를 제시하고, 매개변수 연구 결과를 제시한다.

The stability of semi-rigid skeletal structures accounting for shear deformations

  • Gorgun, Halil
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1065-1084
    • /
    • 2016
  • The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-to-column connections, where patented designs have led to a wide range of types with differing structural quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design of framed structures. This paper presents an overview of the influence of connection behaviour on structural stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental modified stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix were found. The critical load has been searched as a suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate the validity of the analysis procedure. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined with a parametric column effective length study, connection and frame stiffness are used to propose a method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second order (deflection induced) bending moments in the column may be distributed via the connectors to the beams, leading to significant economies.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.