• Title/Summary/Keyword: column/wall

Search Result 411, Processing Time 0.028 seconds

Application of a Divided-Wall Column for the Trichlorosilane Refining Process (삼염화실란 정제공정에서의 분리벽형 증류탑 적용)

  • Hong, Seung-Taek;Lee, Moon-Yong
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, we suggest the application of the divided-wall column (DWC) to the existing trichlorosilane(TCS) purification process in the commercial polysilicon manufacturing process. Using Aspen HYSYS V7.1, an extensive simulation study was carried out for the analysis of the energy consumptions and capital cost for the conventional sequential distillation configuration and the DWC for producing a given purity and yield of trichlorosilane. As a result, it is shown that the DWC saves the separation energy by 61% and the equipment cost by 58% compared with the conventional distillation process.

Rigorous Dynamic Simulation of PTSA Process (PTSA 공정의 상세 동적 모사)

  • Lee, Hye-Jin;Ko, Dae-Ho;Moon, Il;Choi, Dae-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.309-309
    • /
    • 2000
  • The main objective of this study is to understand the regeneration step of the PTSA(Pressure and thermal swing adsorption) process below the atmospheric pressure by rigorous dynamic simulation. This target process is to recover toluene using activated carbon as an adsorbent. To do this, the dynamic simulations for the regeneration step are performed at 360, 490, 590mmHg and at high temperature after the simulation of the adsorption step at latm and 298K. A mathematical model was developed to simulate the column dynamics of the adsorption systems. This model is based on non-equilibrium, non-isothermal and non-adiabatic conditions, and axial dispersion and heat conduction are also considered. Heat transfer resistances are considered in gas-solid, gas-column wall and column wall-outside air. The LDF(Linear Driving Force) approximation model describes the mass transfer rate between the gas and solid phase. This study shows that the recovery of toluene by PTSA is more preferable than that by general TSA.

  • PDF

Cyclic-Loading Test of Exterior Deep-Beam Lower-Column Joint in Upper-Wall Lower-Frame Structure (주상복합구조에서 전이보와 외부기둥 접합부의 반복횡하중 실험)

  • 이한선;김상연;고동우;권기혁;최성모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.851-856
    • /
    • 2000
  • When subjected to the strong earthquake ground motion, upper-wall lower-frame structures have high possibility of the weak-story failure in the lower frame part. Sufficient strength, energy dissipation capacity and ductility should be provided at the joint between the deep beam and the lower column. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the exterior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure¹ and the procedure proposed by Sheikh². The inelastic behavior of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the test of 4 specimens, it is concluded that the specimens designed according to Sheikh's procedure revealed higher ductility than that by ACI procedure.

Experimental Study on the Behavior of Psudo Circular Concrete Column (원형기둥 콘크리트 구멍손실 단면적의 압축거동에 관한 축소모델 실험적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.89-98
    • /
    • 2001
  • There have been a lot of studies about repair & strengthening of the concrete structure. But there has almost not been my study on section damage effect due to holes drilled out for installing additional facilities or equipment, such as rack on the wall of building or underground culvert system, plumbing system through the column or wall of it, after being occupied. This study is to find out how much the section loss due to holes will give loss of section strength. We cm determine if we repair or reinforce it completely or not, using strength loss from the hole. Hole size of diameter 3cm, 2cm, lcm, depth of 3cm, 5cm, 10cm, and position of each hole has been considered as variables of this study. It is concluded that section loss 30% results in 53% of strength damage.

  • PDF

Electron Mobility Calculations for the Positive Column of a Fluorescent Lamp (형광램프 양광주 내의 전자이동도 계산)

  • 지철근;장우진;이진우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 1988
  • Electron mobility which is a basic parameter to represent gas state, is calculated for 38mm 20W fluorescent lamp. 2 Electron Group Model is u&ed for electron distribution function. To prove this result electron mobility in 38mm 20W fluorescent lamp is measured at various wall temperatures. In order to obtain electric field strength of positive column, the sum of anode and cathode fall voltages assumed to be 15(VJ) and dual slit is used to measure positive column length. The measured and calculated result is potted under $10-80^{\circ}C$ wall temperature.

  • PDF

A Study of the Physical Properties of Single Wall Dual-layer Medium Corrugated Board (강심골판지의 물성에 관한 연구)

  • Lee, Soo-Keun;Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Normally, the single wall(SW) corrugated board has more advantages than double wall (DW) corrugated board in terms of the cost of the materials and logistics. For instance, the SW corrugated board has 3 layer papers whereas the DW corrugated board has 5 layer papers. The thickness of the SW is about 5mm, but that of the DW is 8mm. Accordingly, the SW corrugated board is quite more used in the developed countries than the DW corrugated board. But in Korea, the DW corrugated board is quite more used. The reason why more DW corrugated board are used than the SW corrugated in Korea is that in order that the SW corrugated board has the same box compression strength as DW corrugated board, the cost of the SW corrugated board is higher than that of the DW corrugated board because the virgin kraft liners are all imported from overseas. In this study, the physical properties such as flat crush strength and column crush strength of typical SW corrugated board and single wall dual-layer medium corrugated board and their costs were analyzed. The analysis resulted in that single wall dual-layer medium corrugated board has the same thickness as the SW corrugated board but the more flat crush strength and column crush strength and the less cost than the SW corrugated board.

  • PDF

Structural Behaviour of the Wing Wall with Columns (날개벽이 있는 기둥의 구조적 거동 특성)

  • Kang, Young-Woong;Yang, Won-Jik;Kang, Dae-Eon;Yi, Waon-Ho;Song, Dong-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.73-74
    • /
    • 2009
  • Current buildings have complex shaped walls where the wing wall system is a popular option. When the wing wall is attached to a column, or a short span is produced due to the wing wall system, the system affects the behaviour of the column such as by increasing the strength and decreasing the ductility of the members. Calculations for internal shear force and internal bending moment of the vertical members are considered an important matter in design, but currently Korea does not have studies on the effects of the wing wall on the columns.

  • PDF

Efficient Analysis of Shear Wall Strustures with Pilotis considering the in-plane stiffness of the floor slabs (바닥슬래브의 면내강성을 고려한 필로티 구조물의 효율적인 거동분석)

  • Kim Hyun-Su;Kim Hye-Sook;Kim Hyun-Jung;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.865-872
    • /
    • 2006
  • Recently, many apartment buildings in the shear wall system often has pilotis in the lower story to meet the architectural needs. If the lateral force resisting system consists of shear walls supported by columns and beams. the discontinuity at the lowest level with pilotis results in the vertical irregularity with strength and stiffness. So, there are needs to be considered tile analysis and design about column and beam bellow shear walls and the behavior and stress condition of structure by stiffness change being generated at shear walls. The purpose of this paper is to investigate the behavior of shear wall structures with pilotis using the floors modeled as rigid diaphragm or semi rigid diaphragm. Through analyses, after estimating values of the story drift, natural period, stress condition of shear walls and the forces of column, we inferred how the behavior of shear wall structures with pilotis was influenced by the floor stiffness.

  • PDF

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

Effect of Contact Time on the Determination of Mass Transfer Coefficient and Interfacital Area with Sulfite-System (Sulfite-System 을 가지고 物質傳達係數와 相界面積을 測定하는데 接觸時間의 影響)

  • Rhee Bo Sung;Ryu Seung Kon;Kim Hae Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.340-355
    • /
    • 1978
  • Model reactions were often applied in the measuring of the mass transfer coefficient and interfacial area between gas and liquid, which are the most important factors in the design of equipment for gas absorption accompanied with chemical reaction this study, wetted wall column was applied to the sulfite-system among the known model reactions. It was found that one could not ignore the effect of contact time on the determination of mass transfer coefficient and interfacial area. When the reaction rate is very high or very low, the differences of absorption rate would be very large in according to the length of column, that is to the contact time. But the effect of contact time was free about the rate constant $k_2=5.5{\times}10^6m^3/kmol{\cdot}s$, that means the rate of gas absorption become independent upon the hydrodynamics of the equipment. It has shown that instead of steel column could be applied the fine grain-graphite column.

  • PDF