Effect of Contact Time on the Determination of Mass Transfer Coefficient and Interfacital Area with Sulfite-System

Sulfite-System 을 가지고 物質傳達係數와 相界面積을 測定하는데 接觸時間의 影響

  • Rhee Bo Sung (Department of Chmical Engineering, Chungnam National University) ;
  • Ryu Seung Kon (Department of Chmical Engineering, Chungnam National University) ;
  • Kim Hae Yeong (Bureau of Industrial Development, Chungnam Industrial Products Inspection)
  • 이보성 (충남대학교 공과대학 화학공학과) ;
  • 유승곤 (충남대학교 공과대학 화학공학과) ;
  • 김혜영 (공진청 충남공산품검사소)
  • Published : 1978.10.30

Abstract

Model reactions were often applied in the measuring of the mass transfer coefficient and interfacial area between gas and liquid, which are the most important factors in the design of equipment for gas absorption accompanied with chemical reaction this study, wetted wall column was applied to the sulfite-system among the known model reactions. It was found that one could not ignore the effect of contact time on the determination of mass transfer coefficient and interfacial area. When the reaction rate is very high or very low, the differences of absorption rate would be very large in according to the length of column, that is to the contact time. But the effect of contact time was free about the rate constant $k_2=5.5{\times}10^6m^3/kmol{\cdot}s$, that means the rate of gas absorption become independent upon the hydrodynamics of the equipment. It has shown that instead of steel column could be applied the fine grain-graphite column.

化學反應 수반하는 氣體吸着反應器의 設計에 가장 重要한 氣液界面間의 物質傳達係數와 面積을 測定하는데 자주 모델反應이 利用된다. 本硏究는 그 中에서 wetted wall column 에 sulfite-system을 dldydgkdu 特別히 氣液間의 接觸時間이 氣體吸着速道에 미치는 영향을 硏究 檢討하였다. 反應速道가 매우 빠르거나 늦으면 column의 길이에 따라서, 다시 말하면 接觸時間에 따라서 氣體吸着速道에 差異가 크다는 것을 發見했다. 反應速道恒數 $k_2=5.5{\times}10^6m^3/kmol{\cdot}s$ 近處에서는 이 差異가 없어진다. 換言하면 이런 條件下에서 裝置의 hydrodynamics가 氣體吸着速道에 無關해진다. 金屬 column 代身에 graphite column을 使用할 수 있다는 例證을 題示하였다.

Keywords

References

  1. Chem. -Ing.-Tech. v.49 U. Onken;W. Schalk
  2. Disseration Univ. Dortmund W. Schalk
  3. VDI-Berichte v.218 H. Blenke;W. Hirner
  4. Ph. D. Thesis. Techn. Univ. Delft. T. Reith
  5. Chem. Eng. Sci. v.28 T. Reith;W.J. Beck
  6. Trans. Inst. Chem. Engrs. v.48 J.A. Wesselingh;A.C. van't Hoog
  7. Chem. Eng. Sci. v.21 K.J.A. De Waal;J.C. Okeson
  8. Trans. Inst. Chem. Engrs. v.44 K.E. Porter
  9. Trans. Inst. Chem. Engrs. v.32 P.A. Danckwerts;A.M. Kennedy
  10. Chem. Eng. Progress v.50 P. E. Emmert;R. E. Pigford
  11. Chem.-Ing.-Tech. v.46 W. Gestrich;B. Pontow
  12. Chem.-Ing. Tech. v.45 J. W. Hiby
  13. Chem. Eng. Sci. v.25 V. Linek;J. Maryhoferova
  14. Conduction of Heat in Solids H.S. Cariaw;J.G. Jaeger