• Title/Summary/Keyword: color segmentation

Search Result 544, Processing Time 0.031 seconds

Human Tracking and Body Silhouette Extraction System for Humanoid Robot (휴머노이드 로봇을 위한 사람 검출, 추적 및 실루엣 추출 시스템)

  • Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.593-603
    • /
    • 2009
  • In this paper, we propose a new integrated computer vision system designed to track multiple human beings and extract their silhouette with an active stereo camera. The proposed system consists of three modules: detection, tracking and silhouette extraction. Detection was performed by camera ego-motion compensation and disparity segmentation. For tracking, we present an efficient mean shift based tracking method in which the tracking objects are characterized as disparity weighted color histograms. The silhouette was obtained by two-step segmentation. A trimap is estimated in advance and then this was effectively incorporated into the graph cut framework for fine segmentation. The proposed system was evaluated with respect to ground truth data and it was shown to detect and track multiple people very well and also produce high quality silhouettes. The proposed system can assist in gesture and gait recognition in field of Human-Robot Interaction (HRI).

Foreground segmentation and tracking from sequential stereo images for 3D object modeling (3차원 물체 모델링을 위한 연속된 스테레오 이미지 상에서의 전경 영역 분리 및 추적)

  • Han, In-Kyu;Kim, Hyoung-Nyoun;Kim, Kyung-Koo;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The previous researches of 3D object modeling have been performed in a limited environment where a target object only exists. However, in order to model an object in the real environment, we need to consider a dynamic environment, which has various objects and a frequently changing background. Therefore, this paper presents a segmentation and tracking method for a foreground which includes a target object in the dynamic environment. By using depth information than color information, the foreground region can be segmented and tracked more robustly. In addition, the foreground region can be tracked on the sequential images by referring depth distributions of the foreground region because both the position and the status in the consecutive images of the foreground region are almost unchanged. Experimental results show that our proposed method can robustly segment and track the foreground region in various conditions of the real environment. Moreover, as an application of the proposed method, it is presented a method for modeling an object extracting the object regions from the foreground region that is segmented and tracked.

  • PDF

Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement (신뢰 영역 검출 및 시차 지도 재생성 기반 경계 보존 스테레오 매칭)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.132-140
    • /
    • 2016
  • In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.

Face Detection Using Region Segmentation on Complex Image (복잡한 영상에서의 영역 분할을 이용한 얼굴 검출)

  • Park Sun-Young;Kang Byoung-Doo;Kim Jong-Ho;Kwon O-Hwa;Seong Chi-Young;Kim Sang-Kyoon;Lee Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.160-171
    • /
    • 2006
  • In this paper, we propose a face detection method using region segmentation to deal with complex images that have various environmental changes such as mixed background and light changes. To reduce the detection error rate due to background elements of the images, we segment the images with the JSEG method. We choose candidate regions of face based on the ratio of skin pixels from the segmented regions. From the candidate regions we detect face regions by using location and color information of eyes and eyebrows. In the experiment, the proposed method works well with the images that have several faces and different face size as well as mixed background and light changes.

  • PDF

Road Tracking based on Prior Information in Video Sequences (비디오 영상에서 사전정보 기반의 도로 추적)

  • Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • In this paper, we propose an approach to tracking road regions from video sequences. The proposed method segments and tracks road regions by utilizing the prior information from the result of the previous frame. For the efficiency of the system, we have a simple assumption that the road region is usually shown in the lower part of input images so that lower 60% of input images is set to the region of interest(ROI). After initial segmentation using flood-fill algorithm, we merge neighboring regions based on color similarity measure. The previous segmentation result, in which seed points for the successive frame are extracted, is used as prior information to segment the current frame. The similarity between the road region of the previous frame and that of the current frame is measured by the modified Jaccard coefficient. According to the similarity we refine and track the detected road regions. The experimental results reveal that the proposed method is effective to segment and track road regions in noisy and non-noisy environments.

A Study on the Fast Motion Estimation Coding by Moving Region Segmentation (동영역 분할에 의한 고속 움직임 추정 부호화에 관한 연구)

  • Lee, Bong-Ho;Choi, Kyung-Soo;Kwak, No-Youn;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.88-97
    • /
    • 2000
  • This paper presents motion estimation method using region segmentation information Motion estimation which is very difficult to be implemented only by software because of intensive computation cost, is implemented by special-purpose hardware in real-time applications In this paper, we propose region based motion estimation algorithm which can reduce the computation cost by using region segmentation information and setting the variable search window compared with FSMA algorithm Secondly, another proposed algorithm is to segment semantic region like face for selective coding and transfer of semantic region using segmented region information This work alms to improving the subjective quality of skin color region or face region m the picture that has slow motion and IS mainly composed of one or two speakers of video conference and video telephony applications.

  • PDF

Real-Time Foreground Segmentation and Background Substitution for Protecting Privacy on Visual Communication (화상 통신에서의 사생활 보호를 위한 실시간 전경 분리 및 배경 대체)

  • Bae, Gun-Tae;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.505-513
    • /
    • 2009
  • This paper proposes a real-time foreground segmentation and background substitution method for protecting the privacy on visual communication. Previous works on this topic have some problems with the color and shape of foreground and the capture device such as stereo camera. we provide a solution which can segment the foreground in real-time using fixed mono camera. For improving the performance of a foreground extraction, we propose the Temporal Foreground Probability Model (TFPM) by modeling temporal information of a video. Also we provide an boundary processing method for natural and smooth synthesizing that using alpha matte and simple post-processing method.

Corrupted Region Restoration based on 2D Tensor Voting (2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할)

  • Park, Jong-Hyun;Toan, Nguyen Dinh;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.205-210
    • /
    • 2008
  • A new approach is proposed for restoration of corrupted regions and segmentation in natural text images. The challenge is to fill in the corrupted regions on the basis of color feature analysis by second order symmetric stick tensor. It is show how feature analysis can benefit from analyzing features using tensor voting with chromatic and achromatic components. The proposed method is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image into chromatic and achromatic components to analyze images. Secondly, selected feature vectors are analyzed by second-order symmetric stick tensor. And tensors are redefined by voting information with neighbor voters, while restore the corrupted regions. Lastly, mode estimation and segmentation are performed by adaptive mean shift and separated clustering method respectively. This approach is automatically done, thereby allowing to easily fill-in corrupted regions containing completely different structures and surrounding backgrounds. Applications of proposed method include the restoration of damaged text images; removal of superimposed noises or streaks. We so can see that proposed approach is efficient and robust in terms of restoring and segmenting text images corrupted.

Data Augmentation Method for Deep Learning based Medical Image Segmentation Model (딥러닝 기반의 대퇴골 영역 분할을 위한 훈련 데이터 증강 연구)

  • Choi, Gyujin;Shin, Jooyeon;Kyung, Joohyun;Kyung, Minho;Lee, Yunjin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In this study, we modified CT images of femoral head in consideration of anatomically meaningful structure, proposing the method to augment the training data of convolution Neural network for segmentation of femur mesh model. First, the femur mesh model is obtained from the CT image. Then divide the mesh model into meaningful parts by using cluster analysis on geometric characteristic of mesh surface. Finally, transform the segments by using an appropriate mesh deformation algorithm, then create new CT images by warping CT images accordingly. Deep learning models using the data enhancement methods of this study show better image division performance compared to data augmentation methods which have been commonly used, such as geometric conversion or color conversion.

Efficient Inference of Image Objects using Semantic Segmentation (시멘틱 세그멘테이션을 활용한 이미지 오브젝트의 효율적인 영역 추론)

  • Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Go, Myunghyun;Kim, Hakdong;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • In this paper, we propose an efficient object classification method based on semantic segmentation for multi-labeled image data. In addition to various pixel unit information and processing techniques such as color information, contour, contrast, and saturation included in image data, a detailed region in which each object is located is extracted as a meaningful unit and the experiment is conducted to reflect the result in the inference. We use a neural network that has been proven to perform well in image classification to understand which object is located where image data containing various class objects are located. Based on these researches, we aim to provide artificial intelligence services that can classify real-time detailed areas of complex images containing various objects in the future.