Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.502-508
/
2015
Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.11
/
pp.2737-2753
/
2013
In this study, we propose a novel salient object detection strategy based on regional contrast and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn color names offline using the probabilistic latent semantic analysis (PLSA) model to find the mapping between basic color names and pixel values. The color names can be used for image segmentation and region description. Second, image pixels are assigned to special color names according to their values, forming different color clusters. The saliency measure for every cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra variance of the cluster alone. Third, every cluster is divided into local regions that are described with color name descriptors. The regional contrast is evaluated by computing the color distance between different regions in the entire image. Last, the final saliency map is constructed by incorporating the color cluster's spatial compactness measure and the corresponding regional contrast. Experiments show that our algorithm outperforms several existing salient object detection methods with higher precision and better recall rates when evaluated using public datasets.
Korean Journal of Computational Design and Engineering
/
v.19
no.2
/
pp.111-118
/
2014
In tangible augmented reality (AR) environments, the user interacts with virtual objects by manipulating their physical counterparts, but he or she often encounters awkward situations in which his or her hands are occluded by the augmented virtual objects, which causes great difficulty in figuring out hand positions, and reduces both immersion and ease of interaction. To solve the problem of such hand occlusion, skin color information has been usefully exploited. In this paper, we propose an approach to simple and effective construction of a skin color map which is suitable for hand segmentation and tangible AR interaction. The basic idea used herein is to obtain hand images used in a target AR environment by simple image subtraction and to represent their color information by a convex polygonal map in the YCbCr color space. We experimentally found that the convex polygonal map is more accurate in representing skin color than a conventional rectangular map. After implementing a solution for resolving hand occlusion using the proposed skin color map construction, we showed its usefulness by applying it to virtual design evaluation of digital handheld products in a tangible AR environment.
In this paper, we propose an automatic segmentation of the meniscus based on active shape model using interpolated shape information in MR images. First, the statistical shape model of meniscus is constructed to reflect the shape variation in the training set. Second, the generation technique of interpolated shape information by using the weight according to shape similarity is proposed to robustly segment the meniscus with large variation. Finally, the automatic meniscus segmentation is performed through the active shape model fitting. For the evaluation of our method, we performed the visual inspection, accuracy measure and processing time. For accuracy evaluation, the average distance difference between automatic segmentation and semi-automatic segmentation are calculated and visualized by color-coded mapping. Experimental results show that the average distance difference was $0.54{\pm}0.16mm$ in medial meniscus and $0.73{\pm}0.39mm$ in lateral meniscus. The total processing time was 4.87 seconds on average.
Journal of the Korea Society of Computer and Information
/
v.15
no.9
/
pp.25-33
/
2010
We propose a retouching method that converts a general photography to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform DoG(Difference of Gradient) edge extraction and mean shift segmentation respectively from the bilateral filtered image. The DoG edge extraction is performed using luminance component of the image whose RGB color space is transformed into CIELAB space. Experimental result shows that our method can be applied to various types of image and bring better result, especially against the photo taken in daylight.
Journal of the Korea Society of Computer and Information
/
v.10
no.6
s.38
/
pp.65-74
/
2005
This Paper Propose a robust scene change detection technique that use the weighted chi-square test and the automated threshold-decision algorithm. The weighted chi-test can subdivide the difference values of individual color channels by calculating the color intensities according to mSC standard, and it can detect the scene change by joining the weighted color intensities to the predefined chi-test which emphasize the comparative color difference values. The automated decision algorithm uses the difference values of frame-to-frame that was obtained by the weighted chi-test. In the first step, The average of total difference value and standard deviation value is calculated and then, subtract the mean value from the each difference values. In the next step, the same process is performed on the remained difference value. The propose method is tested on various sources and in the experimental results, it is shown that the Proposed method is efficiently estimates the thresholds and reliably detects scene changes.
KIPS Transactions on Software and Data Engineering
/
v.5
no.9
/
pp.401-410
/
2016
3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.
According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.1C
/
pp.53-61
/
2008
In this paper, we propose an algorithm for generation of multi-view video from conventional 2 dimensional video. Color and motion information of an object are used for segmentation and from the segmented objects, multi-view video is generated. Especially, color information is used to extract the boundary of an object that is barely extracted by using motion information. To classify the homogeneous regions with color, luminance and chrominance components are used. A pixel-based motion estimation with a measurement window is also performed to obtain motion information. Then, we combine the results from motion estimation and color segmentation and consequently we obtain a depth information by assigning motion intensity value to each segmented region. Finally, we generate multi-view video by applying rotation transformation method to 2 dimensional input images and the obtained depth information in each object. The experimental results show that the proposed algorithm outperforms comparing with conventional conversion methods.
This paper suggests effective object detection system for moving objects with specified color and motion information. The proposed detection system includes the object extraction and definition process which uses MCN(Multiple Color Normalization) and MCWUPC(Moving Color Weighted Unmatched Pixel Count) computation to decide the existence of moving object and object segmentation technique using signature information is used to exactly extract the objects with high probability. Finally, real time detection system is implemented to verify the effectiveness of the technique and experiments show that the success rate of object tracking is more than $89\%$ of total 120 image frames.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.