• Title/Summary/Keyword: color images

Search Result 2,715, Processing Time 0.028 seconds

Adaptive Image Content-Based Retrieval Techniques for Multiple Queries (다중 질의를 위한 적응적 영상 내용 기반 검색 기법)

  • Hong Jong-Sun;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.73-80
    • /
    • 2005
  • Recently there have been many efforts to support searching and browsing based on the visual content of image and multimedia data. Most existing approaches to content-based image retrieval rely on query by example or user based low-level features such as color, shape, texture. But these methods of query are not easy to use and restrict. In this paper we propose a method for automatic color object extraction and labelling to support multiple queries of content-based image retrieval system. These approaches simplify the regions within images using single colorizing algorithm and extract color object using proposed Color and Spatial based Binary tree map(CSB tree map). And by searching over a large of number of processed regions, a index for the database is created by using proposed labelling method. This allows very fast indexing of the image by color contents of the images and spatial attributes. Futhermore, information about the labelled regions, such as the color set, size, and location, enables variable multiple queries that combine both color content and spatial relationships of regions. We proved our proposed system to be high performance through experiment comparable with another algorithm using 'Washington' image database.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Contrast Enhancement Method for Images from Visual Sensors (비주얼 센서 영상에 대한 대비 개선 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.525-532
    • /
    • 2018
  • Recently, due to the advancements of sensor network technologies and camera technologies, there are increasing needs to effectively monitor the environment in a region that is difficult to access by using the visual sensor network that combines these two technologies. Since the image captured by the visual sensor reflects the natural phenomenon as it is, the quality of the image may deteriorate depending on the weather or time. In this paper, we propose an algorithm to improve the contrast of images using the characteristics of images obtained from visual sensors. In the proposed method, we first set the region of interest and then analyzes the change of the color value of the region of interest according to the brightness value of the image. The contrast of an image is improved by using the high contrast image of the same object and the analysis information. It is shown by experimental results that the proposed method improves the contrast of an image by restoring the color components of the low contrast image simply and accurately.

Text extraction in images using simplify color and edges pattern analysis (색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출)

  • Yang, Jae-Ho;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.

A Study on Image of Black Dress for Men (남성의 검은색 의상에 대한 이미지 연구)

  • Lee, Jung-Mi;Cho, Jean-Suk
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.9 no.2
    • /
    • pp.1-13
    • /
    • 2007
  • Black has played a more important role in the history of fashion than other colors. In general, black was regarded as a color of negative images. However, as people have recognized the aesthetic value of black color, they have expressed unique and various images of black through the medium of clothes. This study was based on both theory research and actual survey, where survey sheets were distributed to collect data. For data analysis, SPSS 10.0, a statistics software, was used, and frequency, pecentage, t-test, ANOVA test, and Duncan test were adopted and analyzed. The survey was conducted on 608 men over 20 in Seoul, Gyeonggi Province, Gangwon Province, and other areas for two months from May 20, 2005 to July 25, 2005. The analysis showed the following results. First, Dignity was the mostly cited image of black color among men followed by modernity, sorrow, feminineness, abstinence, and sensuality. Second, Men showed different responses according to their age. In sum, men more strongly recognize abstinence and sensuality in black dress as they become older. Marital status significantly affected men's recognition of black dress in terms of abstinence and sensuality. Abstinence was more strongly recognized by married men than single men. In addition, married men pointed out sensuality of black dress more frequently than single men. In short, married men tended to recognize abstinence and sensuality more easily than single men. Education level clearly affected men's recognition of dignity, modernity, and abstinence in black dress. In sum, as men got higher education, they tended to increasingly recognize dignity and modernity in black dress. In conclusion, this study has proved that black dress has unique aesthetic values and reflects various images according to age, marital status, education level.

  • PDF

A Study on Extraction of Central Objects in Color Images (칼라 영상에서의 중심 객체 추출에 관한 연구)

  • 김성영;박창민;권규복;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.616-624
    • /
    • 2002
  • An extraction method of central objects in the color images is proposed, in this paper. A central object is defined as a comparatively consist of the central object in the image. First of all. an input image and its decreased resolution images are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent regions are included by a same region in the decreased resolution image. Then core object regions and core background regions are selected from the inner region and the outer region respectively. Core object regions are the representative regions for the object and are selected by using the information about the information about the region size and location. Each inner regions is classified into foreground or background regions by comparing values of a color histogram intersection of the inner region against the core object region and the core background regions. The core object region and foreground regions consist of the central object in the image.

  • PDF

Color Inverse Halftoning using Vector Adaptive Filter (벡터적응필터를 이용한 컬러 역하프토닝)

  • Kim, Chan-Su;Kim, Yong-Hun;Yi, Tai-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.3
    • /
    • pp.162-168
    • /
    • 2008
  • A look-up table based vector adaptive filter is proposed in color inverse halftoning. Inverse halftoning converts halftone image into a continuous-tone image. The templates and training images are required in the process of look-up table based methods, which can be obtained from distributed patterns in the sample halftone images and their original images. Although the look-up table based methods usually are faster and show better performances in PSNR than other methods do, they show wide range of qualities depending on how they treat nonexisting patterns in the look-up table. In this paper, a vector adaptive filter is proposed to compensate for these nonexisting patterns, which achieves better quality owing to the contributed informations about hue, saturation, and intensity of surrounding pixels. The experimental results showed that the proposed method resulted in higher PSNR than that of conventional Best Linear Estimation method. The bigger the size of the template in the look-up table becomes, the more outstanding quality in the proposed method can be obtained.

Fast Face Detection in Video Using The HCr and Adaptive Thresholding Method (HCr과 적응적 임계화에 의한 고속 얼굴 검출)

  • 신승주;최석림
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.61-71
    • /
    • 2004
  • Recently, various techniques for face detection are studied, but most of them still have problems on processing in real-time. Therefore, in this paper, we propose novel techniques for real-time detection of human faces in sequential images using motion and chroma information. First, background model is used to find a moving area. In this procmoving area. edure, intensity values for reference images are averaged, then skin-color are detected in We use HCr color-space model and adaptive threshold method for detection. Second, binary image labeling is applied to acquire candidate regions for faces. Candidates for mouth and eyes on a face are obtained using differences between green(G) and blue(B), intensity(I) and chroma-red(Cr) value. We also considered distances between eye points and mouth on a face. Experimental results show effectiveness of real-time detection for human faces in sequential images.

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

Facial Contour Extraction in PC Camera Images using Active Contour Models (동적 윤곽선 모델을 이용한 PC 카메라 영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.633-638
    • /
    • 2005
  • The extraction of a face is a very important part for human interface, biometrics and security. In this paper, we applies DCM(Dilation of Color and Motion) filter and Active Contour Models to extract facial outline. First, DCM filter is made by applying morphology dilation to the combination of facial color image and differential image applied by dilation previously. This filter is used to remove complex background and to detect facial outline. Because Active Contour Models receive a large effect according to initial curves, we calculate rotational degree using geometric ratio of face, eyes and mouth. We use edgeness and intensity as an image energy, in order to extract outline in the area of weak edge. We acquire various head-pose images with both eyes from five persons in inner space with complex background. As an experimental result with total 125 images gathered by 25 per person, it shows that average extraction rate of facial outline is 98.1% and average processing time is 0.2sec.

  • PDF