DOI QR코드

DOI QR Code

Contrast Enhancement Method for Images from Visual Sensors

비주얼 센서 영상에 대한 대비 개선 방법

  • Park, Sang-Hyun (Dept. of Multimedia Engineering, Sunchon National University)
  • 박상현 (순천대학교 멀티미디어공학과)
  • Received : 2018.03.28
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

Recently, due to the advancements of sensor network technologies and camera technologies, there are increasing needs to effectively monitor the environment in a region that is difficult to access by using the visual sensor network that combines these two technologies. Since the image captured by the visual sensor reflects the natural phenomenon as it is, the quality of the image may deteriorate depending on the weather or time. In this paper, we propose an algorithm to improve the contrast of images using the characteristics of images obtained from visual sensors. In the proposed method, we first set the region of interest and then analyzes the change of the color value of the region of interest according to the brightness value of the image. The contrast of an image is improved by using the high contrast image of the same object and the analysis information. It is shown by experimental results that the proposed method improves the contrast of an image by restoring the color components of the low contrast image simply and accurately.

최근 센서 네트워크 기술의 발달과 카메라 기술의 발달로 이 두 기술을 접목한 비주얼 센서 기술을 이용하여 사람이 접근하기 어려운 지역의 환경을 효과적으로 모니터링하고자 하는 수요가 증가하고 있다. 비주얼 센서에서 획득된 영상은 자연 현상을 그대로 반영하기 때문에 날씨나 시간에 따라 영상의 품질이 나빠질 수 있다. 이 논문에서는 비주얼 센서에서 획득되는 영상의 특성을 이용하여 영상의 대비를 개선하는 알고리즘을 제안한다. 제안하는 방법에서는 먼저 비주얼 센서가 촬영하는 대상에 대해서 관심 영역을 설정하고 관심 영역의 컬러 값의 변화를 영상의 밝기 값에 따라 분석한다. 그리고 분석한 결과와 동일한 대상의 고대비 영상을 이용하여 저대비 영상의 대비를 개선한다. 실험 결과는 제안하는 방법이 간단하면서도 정확하게 저대비 영상의 컬러 성분들을 복원하여 영상의 대비를 개선하는 것을 보여준다.

Keywords

References

  1. B. Tavli, K. Bicakci, R. Zilan, and J. Barcelo-Ordinas, "A survey of visual sensor network platforms," Multimededia Tools and Applications, vol. 60, no. 3, Oct. 2012, pp. 689-726. https://doi.org/10.1007/s11042-011-0840-z
  2. C. Lee, "Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 3, 2017, pp. 439-444. https://doi.org/10.13067/JKIECS.2017.12.3.439
  3. P. Porambage, A. Heikkinen, E. Harjula, A. Gurtov, and M. Ylianttila, "Quantitative Power Consumption Analysis of a Multi-tier Wireless Multiemedia Sensor Network," In Proc. European Wireless 2016, Oulu, Finland, May 2016.
  4. J. Park, S. Lee, and W. Oh, "Congestion Control Mechanism for Efficient Network Environment in WMSN," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 289-296. https://doi.org/10.13067/JKIECS.2015.10.2.289
  5. E. Eriksson, G. Dan, and V. Fodor, "Prediction-Based Load Control and Balancing For Feature Extraction in Visual Sensor Networks," In Proc. Acoustics, Speech, and Signal Processing 2014, Florence, Italy, July 2014, pp. 674-678.
  6. S. Park, "Color Analysis and Binarization of River Image for River Surveillance," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 175-185. https://doi.org/10.13067/JKIECS.2018.13.1.175
  7. H. Kim, "Real-time Flame Detection Using Colour and Dynamic Features of Flame Based on FFmpeg," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 9, 2014, pp. 977-982. https://doi.org/10.13067/JKIECS.2014.9.9.977
  8. R. Gonzalez and R. Woods, Digital Image Processing. New Jersey: Pearson, 2010.
  9. J. Jia, J. Sun, C. Tang, and H. Shum, "Bayesian correction of image intensity with spatial consideration," In Proc. European Conf. Computer Vision 2004, Berlin, Germany, 2004, pp. 342-354.
  10. U. Kim, J. Lee, Y. Kim, K. Park, and Y. Moon, "Photographic Color Reproduction based on color variation characteristics of digital camera," Korean Society For Internet Information Tran. Internet and Information Systems, vol. 5, no. 11, 2011, pp. 2160-2174.