• Title/Summary/Keyword: color images

Search Result 2,708, Processing Time 0.032 seconds

A Study on the Effectiveness of the Image Recognition Technique of Augmented Reality Contents (증강현실 콘텐츠의 이미지 인식 기법 효과성 연구)

  • Suh, Dong-Hee
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.337-356
    • /
    • 2015
  • Recently augmented reality contents are variously used in public such as advertisements or exhibits as well as children's books. Therefore, it is certain that the market, development of augmented reality contents, is gradually growing. Those who are the producer of augmented reality may be familiar with the skill where those images are used as a marker which is created by image recognition technique. In case of using image recognition technique, they usually use the augmented reality marker platform from Qualcomm since it is able to recognize self-produced images and 3-dimensional figures at no cost. This study was started when undergraduate students began to use those general techniques in their contents producing process. AR majoring students in Namseoul University applied image recognition technique to 3 AR contents exhibited in Sejong Center. Creating 3 different images, they have registered images at Image Target Manager provided by Vuforia to use as a marker. Moreover, they have modified the image producing method to raise the recognition rate by research. The higher recognition rate brings the more stable use of augmented reality contents. To achieve the satisfied rate, they have compared the elements of color contrast, pattern and etc. in the use of platform. Thus, the effective image creation method has been drawn. This study is aiming to suggest the production of stable contents by recognizing smart devices' limitation and producing educational contents. The purpose of this study is to help practically augmented reality contents developers by illustrating the application of augmented reality contents which are based on image recognition technique and also its effectiveness at the same time.

A Study on Image Analysis of Graphene Oxide Using Optical Microscopy (광학 현미경을 이용한 산화 그래핀 이미지 분석 조건에 관한 연구)

  • Lee, Yu-Jin;Kim, Na-Ri;Yoon, Sang-Su;Oh, Youngsuk;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.183-189
    • /
    • 2014
  • Experimental considerations have been performed to obtain the clear optical microscopic images of graphene oxide which are useful to probe its quality and morphological information such as a shape, a size, and a thickness. In this study, we investigated the contrast enhancement of the optical images of graphene oxide after hydrazine vapor reduction on a Si substrate coated with a 300 nm-thick $SiO_2$ dielectric layer. Also, a green-filtered light source gave higher contrast images comparing to optical images under standard white light. Furthermore, it was found that a image channel separation technique can be an alternative to simply identify the morphological information of graphene oxide, where red, green, and blue color values are separated at each pixels of the optical image. The approaches performed in this study can be helpful to set up a simple and easy protocol for the morphological identification of graphene oxide using a conventional optical microscope instead of a scanning electron microscopy or an atomic force microscopy.

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

Automatic 3D data extraction method of fashion image with mannequin using watershed and U-net (워터쉐드와 U-net을 이용한 마네킹 패션 이미지의 자동 3D 데이터 추출 방법)

  • Youngmin Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.825-834
    • /
    • 2023
  • The demands of people who purchase fashion products on Internet shopping are gradually increasing, and attempts are being made to provide user-friendly images with 3D contents and web 3D software instead of pictures and videos of products provided. As a reason for this issue, which has emerged as the most important aspect in the fashion web shopping industry, complaints that the product is different when the product is received and the image at the time of purchase has been heightened. As a way to solve this problem, various image processing technologies have been introduced, but there is a limit to the quality of 2D images. In this study, we proposed an automatic conversion technology that converts 2D images into 3D and grafts them to web 3D technology that allows customers to identify products in various locations and reduces the cost and calculation time required for conversion. We developed a system that shoots a mannequin by placing it on a rotating turntable using only 8 cameras. In order to extract only the clothing part from the image taken by this system, markers are removed using U-net, and an algorithm that extracts only the clothing area by identifying the color feature information of the background area and mannequin area is proposed. Using this algorithm, the time taken to extract only the clothes area after taking an image is 2.25 seconds per image, and it takes a total of 144 seconds (2 minutes and 4 seconds) when taking 64 images of one piece of clothing. It can extract 3D objects with very good performance compared to the system.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

A Stereo Video Avatar for Supporting Visual Communication in a $CAVE^{TM}$-like System ($CAVE^{TM}$-like 시스템에서 시각 커뮤니케이션 지원을 위한 스테레오 비디오 아바타)

  • Rhee Seon-Min;Park Ji-Young;Kim Myoung-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.354-362
    • /
    • 2006
  • This paper suggests a method for generating high qualify stereo video avatar to support visual communication in a CAVE$^{TM}$-like system. In such a system because of frequent change of light projected onto screens around user, it is not easy to extract user silhouette robustly, which is an essential step to generate a video avatar. In this study, we use an infrared reflective image acquired by a grayscale camera with a longpass filter so that the change of visible light on a screen is blocked to extract robust user silhouette. In addition, using two color cameras positioned at a distance of a binocular disparity of human eyes, we acquire two stereo images of the user for fast generation and stereoscopic display of a high quality video avatar without 3D reconstruction. We also suggest a fitting algorithm of a silhouette mask on an infrared reflective image into an acquired color image to remove background. Generated stereo images of a video avatar are texture mapped into a plane in virtual world and can be displayed in stereoscopic using frame sequential stereo method. Suggested method have advantages that it generates high quality video avatar taster than 3D approach and it gives stereoscopic feeling to a user 2D based approach can not provide.

A Method of Hand Recognition for Virtual Hand Control of Virtual Reality Game Environment (가상 현실 게임 환경에서의 가상 손 제어를 위한 사용자 손 인식 방법)

  • Kim, Boo-Nyon;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.