Recent 3D printing technology has been grafting onto various medical practices. In light of this trend, this research is intended to examine the figuration surface's accuracy of 3D images made by using DICOM images after printing by 3D printing. The medical images were obtained from animal bone objects, while the objects were printed after undergoing STL file conversion for 3D printing purposes. Ultimately, after the 3D figuration, which was obtained by the original animal bones and 3D printing, was scanned by 3D scanner, 3D modeling was merged each other and the differences were compared. The result analysis was conducted by visual figuration comparison, color comparison of modeling's scale value, and numerical figuration comparison. The shape surface was not visually distinguished; the numerical figuration comparison was made from the values measured from the four different points on the X, Y and Z coordinates. The shape surface of the merged modeling was smaller than the original object (the animal bone) by average of -0.49 mm in the 3D printed figuration. However, not all of the shape surface was uniformly reduced in size and the differences was within range of -0.83 mm on the experiment.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.6
/
pp.81-89
/
2004
In this paper, we compare face recognition rate by PCA algorithm using distance change and embedded data being input left side and right side image in stereo images. The proposed method detects face region from RGB color space to YCbCr color space. Also, The extracted face image's scale up/down according to distance change and extracts more robust face region. The proposed method through an experiment could establish standard distance (100cm) in distance about 30∼200cm, and get 99.05% (100cm) as an average recognition result by scale change. The definition of super state is specification region in normalized size (92${\times}$112), and the embedded data extracts the inner factor of defined super state, achieved face recognition through PCA algorithm. The orignal images can receive specification data in limited image's size (92${\times}$112) because embedded data to do learning not that do all learning, in image of 92${\times}$112 size averagely 99.05%, shows face recognition rate of test 1 99.05%, test 2 98.93%, test 3 98.54%, test 4 97.85%. Therefore, the proposed method through an experiment showed that if apply distance change rate could get high recognition rate, and the processing speed improved as well as reduce face information.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.4
/
pp.897-904
/
2005
Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.25-33
/
2006
We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.457-464
/
2021
The advent of the big data era has enabled the rapid development of deep learning that learns rules by itself from data. In particular, the performance of CNN algorithms has reached the level of self-adjusting the source data itself. However, the existing image processing method only deals with the image data itself, and does not sufficiently consider the heterogeneous environment in which the image is generated. Images generated in a heterogeneous environment may have the same information, but their features may be expressed differently depending on the photographing environment. This means that not only the different environmental information of each image but also the same information are represented by different features, which may degrade the performance of the image analysis model. Therefore, in this paper, we propose a method to improve the performance of the image color constancy model based on Adversarial Learning that uses image data generated in a heterogeneous environment simultaneously. Specifically, the proposed methodology operates with the interaction of the 'Domain Discriminator' that predicts the environment in which the image was taken and the 'Illumination Estimator' that predicts the lighting value. As a result of conducting an experiment on 7,022 images taken in heterogeneous environments to evaluate the performance of the proposed methodology, the proposed methodology showed superior performance in terms of Angular Error compared to the existing methods.
This study proposes IMToon(IMage-based carToon) which is an image-based cartoon authoring system using an image processing algorithm. The proposed IMToon allows general users to easily and efficiently produce frames comprising cartoons based on image. The authoring system is designed largely with two functions: cartoon effector and interactive story editor. Cartoon effector automatically converts input images into a cartoon-style image, which consists of image-based cartoon shading and outline drawing steps. Image-based cartoon shading is to receive images of the desired scenes from users, separate brightness information from the color model of the input images, simplify them to a shading range of desired steps, and recreate them as cartoon-style images. Then, the final cartoon style images are created through the outline drawing step in which the outlines of the shaded images are applied through edge detection. Interactive story editor is used to enter text balloons and subtitles in a dialog structure to create one scene of the completed cartoon that delivers a story such as web-toon or comic book. In addition, the cartoon effector, which converts images into cartoon style, is expanded to videos so that it can be applied to videos as well as still images. Finally, various experiments are conducted to verify the possibility of easy and efficient production of cartoons that users want based on images with the proposed IMToon system.
This study was done to evaluate the reliability of the digital color analysis system (ShadeScan, CYNOVAD, Montreal. Canada) for dentistry. Sixteen tooth models were made by injecting the A2 shade chemical cured resin for temporary crown into the impression acquired from 16 adults. Surfaces of the model teeth were polished with resin polishing cloth. The window of the ShadeScan handpiece was placed on the labial surface of tooth and tooth images were captured, and each tooth shade was analyzed with the ShadeScan software. Captured images were selected in groups, and compared one another. Two models were selected to evaluate repeatability of ShadeScan, and shade analysis was performed 10 times for each tooth. And, to ascertain the color difference of same shade code analyzed by ShadeScan, CIE $L^*a^*b^*$values of shade guide of Gradia Direct (GC, Tokyo, Japan) were measured on the white and black background using the Spectrolino (GretagMacbeth, USA), and Shade map of each shade guide was captured using the ShadeScan. There were no teeth that were analyzed as A2 shade and unique shade. And shade mapping analyses of the same tooth revealed similar shade and distribution except incisal third. Color difference (${\Delta}E^*$) among the Shade map which analyzed as same shade by ShadeScan were above 3. Within the limits of this study, digital color analysis instrument for dentistry has relatively high repeatability, but has controversial in accuracy.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.1
s.307
/
pp.55-66
/
2006
We propose a progressive image retrieval method based on an efficient combination of multiresolution color and torture features in wavelet transform domain. As a color feature, color autocorrelogram of the hue and saturation components is chosen. As texture features, BDIP and BVLC moments of the value component are chosen. For the selected features, we obtain multiresolution feature vectors which are extracted from all decomposition levels in wavelet domain. The multiresolution feature vectors of the color and texture features are efficiently combined by the normalization depending on their dimensions and standard deviation vector, respectively, vector components of the features are efficiently quantized in consideration of their storage space, and computational complexity in similarity computation is reduced by using progressive retrieval strategy. Experimental results show that the proposed method yields average $15\%$ better performance in precision vs. recall and average 0.2 in ANMRR than the methods using color histogram color autocorrelogram SCD, CSD, wavelet moments, EHD, BDIP and BVLC moments, and combination of color histogram and wavelet moments, respectively. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.
In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.
In this paper, we propose an image generator for OLED panel test that can compensate for color coordinates and luminance by using panel defect inspection and optical measurement while displaying images on OLED panel. The proposed image generator consists of two processes: the image generation process and the process of compensating color coordinates and luminance using optical measurement. In the image generating process, the panel is set to receive the panel information to drive the panel, and the image is output by adjusting the output setting of the image generator according to the panel information. The output form of the image is configured by digital RGB method. The pattern generation algorithm inside the image generator outputs color and gray image data by transmitting color data to a 24-bit data line based on a synchronization signal according to the resolution of the panel. The process of compensating color coordinates and luminance using optical measurement outputs an image to an OLED panel in an image generator, and compensates for a portion where color coordinates and luminance data measured by an optical module differ from reference data. To evaluate the accuracy of the image generator for the OLED panel test proposed in this paper, Xilinx's Spartan 6 series XC6SLX25-FG484 FPGA was used and the design tool was ISE 14.5. The output of the image generation process was confirmed that the target setting value and the simulation result value for the digital RGB output using the oscilloscope matched. Compensating the color coordinates and luminance using optical measurements showed accuracy within the error rate suggested by the panel manufacturer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.