• 제목/요약/키워드: color and texture features

검색결과 152건 처리시간 0.02초

Melon Surface Color and Texture Analysis for Estimation of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.252-257
    • /
    • 2012
  • Purpose: The net rind pattern and color of melon surface are important for a high market value of melon fruits. The development of the net and color are closely related to the changes in shape, size, and maturing. Therefore, the net and color characteristics can be used indicators for assessment of melon quality. The goal of this study was to investigate the possibility of estimating melon soluble solids content (SSC) and firmness by analyzing the net and color characteristics of fruit surface. Methods: The true color images of melon surface obtained at fruit equator were analyzed with 18 color features and 9 texture features. The partial least squares (PLS) method was used to estimate SSC and firmness in melons using their color and texture features. Results: In sensing melon SSC, the coefficients of determination of validation (${R_v}^2$) of the prediction models using the color and texture features were 0.84 (root mean square error of validation, RMSEV: 1.92 $^{\circ}Brix$) and 0.96 (RMSEV: 0.60 $^{\circ}Brix$), respectively. The ${R_v}^2$ values of the models for predicting melon firmness using the color and texture features were 0.64 (RMSEV: 4.62 N) and 0.79 (RMSEV: 2.99 N), respectively. Conclusions: In general, the texture features were more useful for estimating melon internal quality than the color features. However, to strengthen the usefulness of the color and texture features of melon surface for estimation of melon quality, additional experiments with more fruit samples need to be conducted.

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성 (Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • 제22권1호
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

칼라 및 다해상도 질감 특징 결합에 의한 영상검색 (Image Retrieval Using Combination of Color and Multiresolution Texture Features)

  • 천영덕;성중기;김남철
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.930-938
    • /
    • 2005
  • 본 논문에서는 칼라 특징과 다해상도 질감 특징의 효율적인 결합에 근거한 내용기반 영상검색 기법을 제안한다. 칼라 특징으로는 칼라의 공간적인 상관관계를 잘 나타내는 HSV 칼라 오토코렐로그램(color autocorrelogram)을 선택하였고, 질감 특징으로는 국부 밝기 변화와 국부 질감의 부드러움 정도를 잘 측정하는 BDIP와 BVLC를 선택하였다. 이 질감 특징들은 칼라 영상의 휘도(luminance) 성분에서 웨이브렛(wavelet) 분해되어 다해상도로 추출되었다. 그리고 이들 칼라와 질감 특징들은 효율적인 유사도 측정을 위해 각각 이들의 차원들과 표준편차 벡터들에 의해 정규화된 후 결합되었다. 실험을 위한 영상으로는 Corel DB와 VisTex DB, 그리고 이들로부터 파생되어 다양한 해상도의 영상으로 구성된 Corel_MR DB와 VisTex_MR DB를 사용하였다. 실 험 결과, 제안한 방법은 Precision vs. Recall 평가에서 기존의 BDIPBVLC 방법과 칼라 오토코렐로그램 방법보다 각각 평균 $8\%$와 평균 $11\%$ 향상된 성능을 나타내었으며 웨이브렛. 모멘트, CSD, 히스토그램을 이용한 방법들보다 $10\%$ 이상의 높은 성능을 나타내었다. 특히, 제안한 방법이 다른 방법들 보다 다해상도로 구성된 영상 DB에서 높은 검색 성능 차이를나타내었다.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

칼라 및 질감 속성 벡터를 이용한 위성영상의 분류 (Satellite Image Classification Based on Color and Texture Feature Vectors)

  • 곽장호;김준철;이준환
    • 대한원격탐사학회지
    • /
    • 제15권3호
    • /
    • pp.183-194
    • /
    • 1999
  • 위성에서 관측된 다중분광 위성영상 데이터를 이용목적에 따라 분석하고 활용하기 위해서는 영상 자체에 내포된 밝기, 칼라, 질감 등 다양한 특징들이 중요한 정보원으로 이용되고 있다. 특히 질감이나 칼라정보를 이용한 위성영상의 분석과정에서 가장 중요한 문제는 원 영상의 정보를 효율적으로 표현하는 속성을 추출하여 적절히 활용하는 것이다. 따라서 본 논문에서는 위성영상 분석에 유용하게 사용할 수 있는 6개의 속성 벡터들을 선정한 다음 SPOT 위성에서 관측된 영상을 이용하여 각각의 속성들에 대한 분별력을 평가하기 위하여 역전파 신경망(Back-propagation Neural Network)을 이용한 분류 네트워크를 구성하였고, 실험하고자 하는 지역에 대한 훈련집합 선택시 선정된 여섯 개이 속성 벡터들을 분류에 사용될 특징으로 선택하였다. 분류 실험을 수행한 결과 각각의 벡터 속성들은 개개의 특성에 따라 많은 장단을 내포하고 있었으며, 전반적으로는 비교적 정확한 분류결과를 나타내었다. 따라서 칼라 및 질감 속성 벡터들은 위성영상의 분류과정에 효과적으로 사용될 수 있음은 물론 다양한 영상분석 및 응용분야에서도 유용하게 이용될 수 있을 것으로 기대된다.

Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색 (Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR)

  • 최창규;류상률;김승호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권6호
    • /
    • pp.692-704
    • /
    • 2002
  • 본 논문은 이미지에서 Quadtree를 이용한 색상-공간 특징 추출과 이미지 내에 포함되어 있는 객체의 MBR(Minimum Boundary Rectangie)을 구하여 질감 정보를 추출하는 방법을 제안한다. 제안된 방법은 각 이미지로부터 DC 이미지를 만들고 색상 좌표계를 변환한 후, Quadtree를 이용하여 영역을 분할한다. 영역의 분한 기준은 제안된 조건에 의하여 이루어지며, 각 분할된 영역으로부터 대표 색상을 추출한다. 그리고, 이미지 분할(segmentation)을 통하여 각 이미지의 객체, 객체를 포함한 배경, 또는 일부 배경의 MBR을 구하고, 제안된 알고리즘에 의하여 검색된 MBR의 웨이블릿 계수(wavelet coefficients)를 계산한다. 이 계수들이 MBR의 질감 정보가 되며, 추출된 색상-공간 정보와 질감 정보를 이용하여 제안된 유사도 계산 방법을 통하여 결과를 나타내게 된다. 제안된 방법은 원 이미지(original image)에 비해 특징 정보의 저장 공간을 53% 감소시켰으며, 성능은 유사하게 나타났다. 그리고, 질감 정보를 추가함으로써, 색상-공간 특징의 단점인 객체 정보의 손실을 보완하였고, 질의 이미지의 객체를 포함한 검색 결과를 보였다.

A Study on the Emotional Evaluation of fabric Color Patterns

  • Koo, Hyun-Jin;Kang, Bok-Choon;Um, Jin-Sup;Lee, Joon-Whan
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.11-20
    • /
    • 2002
  • There are Two new models developed for objective evaluation of fabric color patterns by applying a multiple regression analysis and an adaptive foray-rule-based system. The physical features of fabric color patterns are extracted through digital image processing and the emotional features are collected based on the psychological experiments of Soen[3, 4]. The principle physical features are hue, saturation, intensity and the texture of color patterns. The emotional features arc represented thirteen pairs of adverse adjectives. The multiple regression analyses and the adaptive fuzzy system are used as a tool to analyze the relations between physical and emotional features. As a result, both of the proposed models show competent performance for the approximation and the similar linguistic interpretation to the Soen's psychological experiments.

  • PDF

색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색 (Content-based Image Retrieval using the Color and Wavelet-based Texture Feature)

  • 박종현;박순영;조완현;오일석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.125-133
    • /
    • 2003
  • 본 논문에서는 색상과 웨이블렛 기반의 질감 특징들을 사용한 효율적인 내용기반 영상검색 방법을 제안하였다. 색상특징은 전체 영상으로부터 추출된 soft-히스토그램이 사용되며 질감 특징으로는 웨이블렛 변환의 공간 주파수 분석을 통하여 얻어진 고대역 부밴드로부터 추출된 불변 모우멘트가 이용된다. CTBTR이라 불리는 검색시스템은 질의 영상에 대한 효율적인 영상 검색을 위하여 두 단계의 유사성 정합을 수행하는데 첫 번째 정합 단계에서는 간단한 색상 히스토그램을 사용하여 질의 영상과 유사하지 않은 영상을 제거하여서 검색대상의 수를 줄이며, 두 번째 정합 단계에서는 첫 번째 단계에서 선별된 후보영상에 웨이블렛 기반의 질감특징을 적용하여 질의 영상과 유사한 영상을 검색한다. 실험결과 제안된 알고리즘이 기존의 방법보다 검색에 있어서 효율적인 계산처리와 정확한 검색을 수행하여 향상된 결과를 보여 주었다.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.