• 제목/요약/키워드: collision and grounding

검색결과 59건 처리시간 0.022초

유조선의 간이 충돌/좌초강도 평가시스템 개발 (Development of Simplified Collision and Grounding Strength Assessment System of Oil Tankers)

  • 이탁기;김재동;전태병
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제2권2호
    • /
    • pp.86-94
    • /
    • 1999
  • This paper describes a development of Collision/grounding Strength Assessment System (COSAS) using simplified method. This method is formulated in closed-form equation by taking into account crushing caused by bulbous bow collision and cutting caused by forward speed grounding. To verify the accuracy of the developed system, some examples for test models of double side/bottom structure in collision/grounding situation are considered. This system might be useful for analysis of structural damage of oil tankers in collision/grounding.

  • PDF

손상된 선박의 구난 기술 및 안전 예항에 관한 연구 (2) - 이중선체 유조선의 충돌 및 좌초에 의한 손상역학거동 - (A Study on Rescue Technique and Safe Tow of Damaged Ship (2) - Failure Mechanisms of Collision and Grounding of Double Hull Tanker -)

  • 이상갑;최경식;손경호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권2호
    • /
    • pp.82-95
    • /
    • 1998
  • 이 논문에서는 LS/DYNA3D를 이용하여 다음과 같은 2가지 수치 시뮬레이션을 수행한다: 첫 번째 시뮬레이션은 310,000 DWT 이중선체 VLCC (피충돌선)과 35,000 및 105,000 DWT의 2척의 유조선(충돌선)들과의 충돌에 관한 경우로서, 충돌선들은 VLCC의 중심선에 직각으로 중앙부에 충돌하는 것으로 가정한다. 두 번째는 40,000 DWT급의 재래식과 개량식 이중선체 유조선의 선저구조의 2가지 모델, CONV/PD328과 ADH/PD328에 대한 좌초에 관한 시뮬레이션이다. 이 연구의 전체적인 목적은 이중선체 유조선의 선측 및 선저구조에 충돌 및 좌초가 각각 발생하는 동안에 이중선체의 내판이 찢어지기 시작하고 운동에너지가 소산되면서 선체가 정지되는 등의 구조적인 파손 및 흡수에너지의 역학적인 거동을 이해하는 것이다. 이러한 수치 시뮬레이션을 통하여 충돌 및 좌초시의 손상 정도를 쉽게 추정할 수 있을 것이고 유조선의 설계 시 안전도의 개선에 이바지할 수 있게 할 것이다.

  • PDF

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.

고도 정밀 M&S 시스템을 이용한 해난사고 원인규명 (Marine Accident Cause Investigation using M&S System)

  • 이상갑
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 춘계학술대회
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

HYDROCODE LS/DYNA3D를 이용한 선박의 충돌 및 좌초에 관한 연구 (A Study on the Collision and Grounding of Ships using HYDROCODE LS/DYNA3D)

  • 이상갑;정영구
    • 해양환경안전학회지
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 1997
  • This paper describes a series of numerical simulations of colision between a 310, 000 DWT double hull VLCC (struck ship) and three 35, 000, 70, 000 and 105, 000 DWT tankers (striking ships) using LS/DYNA3D. Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the VLCC centerline. Striking ship speeds are varied to find a critical speed without failure of inner side shell, and the informations of collision force and absorption energy of each case are also reported. The validation of LS/DYNA3D in this study was made by comparing the result of numerical simulation of LS/DYNA3D with that of double hull tanker grounding experiment by the Carderock Division of Navla Surface Warfare Center (CDNSWC).

  • PDF

시뮬레이터 기반 퍼지알고리즘과 환경스트레스모델을 이용한 선박 충돌위험도 추정에 관한 연구 (Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Fuzzy Algorithm and Environmental Stress Model)

  • 손남선;김선영;공인영
    • 한국항해항만학회지
    • /
    • 제33권1호
    • /
    • pp.43-50
    • /
    • 2009
  • 최근 해양사고가 날로 증가되고 있으며, 특히, 인적과실로 인한 충돌사고의 비중은 70%에 이르고 있다. 본 연구에서는 실시간 충돌 위험도 표시 시스템을 개발하였는데, 충돌위험도를 사전에 인지함으로써 비상상황에 효과적으로 대처하고, 인적과실로 인한 충돌위험도를 줄이고자 하였다. 충돌위험도 추정을 위해, 선박들 간에 충돌위험도를 평가하는 퍼지알고리즘을 이용한 방법과 항해사가 느끼는 환경스트레스를 이용하여 충돌위험도를 평가하는 방법의 두 가지를 비교 검토하였다. 실시간 충돌위험도 추정 알고리즘을 검증하기 위해 선박운항 시뮬레이터에 설치하고 다양한 시뮬레이션을 수행하였다.