• Title/Summary/Keyword: collector efficiency

Search Result 326, Processing Time 0.026 seconds

A study on the thermal performance of all glass evacuated tube collector and refrigerator using solar energy (태양열을 이용한 이중진공관형 집열기와 냉동기의 열성능에 관한 연구)

  • Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • All evacuated tube collector is being constantly studied since it can reduce the conductive heat loss in absorber by using vacuum technology and has advantage of heat transport capacity and quick thermal response in comparatively small temperature difference. This study investigated the dynamic thermal performance of the solar collector with the control condition of solar irradiance and fluid temperature by using performance experimental apparatus which is combined with solar collector and refrigerator, examined the thermal characteristics in definite temperature range of fluid in constant temperature tank by simultaneously measuring refrigerating performance. As a result of it, I deducted the related equation of collector efficiency and found that mean collector efficiency has increased through quick heat transfer characteristics according to increase of outdoor temperature and irradiance in case of outlet temperature of constant temperature tank $22^{\circ}C$ when set outlet temperature of solar collector $25^{\circ}C$ with outlet temperature of constant temperature tank $18^{\circ}C$ & $22^{\circ}C$. Also COP of refrigerator was acquired value of 6.2~7.1 at outlet temperature of constant temperature tank $18^{\circ}C$.

Design of a Light Collector with Two-story LED Mounting Holder for a Fiber-optic Illuminator (광파이버 일루미네이터의 2층구조형 LED 집광판 설계)

  • Kim, Wan-Ho;Park, Jun-Seok;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.255-258
    • /
    • 2001
  • This paper proposes a new structure of a fiber-optic illuminator using high Lux RGB LEDs. A simulation program, LightTools, is used for the verification of the model. An LED mounting holder containing 74 RGB LEDs is used as a basic part of its light collector. Since the light output level of current LED lamps is still far below that of conventional lamps, it is required to double the right output in order to replace a conventional illuminator with a halogen lamp. An additional cone-type reflector is installed hemispherically and the resulting structure comprises a basic collector unit. To further increase the output two collector units are connected together in series. As the result, the light output increases nearly 70% with compared to a collector with a basic structure. The system efficiency can be increased more than 8 times with compared to conventional one.

  • PDF

Exhaust Flow Characteristics of Catalytic Converter Adapted to Exhaust Manifold (배기매니폴드 직접부착 촉매장치의 배기 유동특성)

  • Park, Young-Cheol;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.837-844
    • /
    • 2003
  • The exhaust gas flow in the inlet collector of close coupled catalyst(CCC) adapted to the exhaust manifold is very complex flow because the exhaust gas is a pulsation flow with several port flow. The distribution of gas flow and temperature in inlet collector effect to the efficiency of catalytic converter. In this study, it measures temperatures on several point in inlet collector with two kind of inlet collector volume. And it analyzes with CFD to exhaust manifold and close coupled catalyst for temperature and flow. Comparing to measured and analyzed result, it find increasing of collector volume effects to catalyst temperature distribution and uniformity of catalytic converter

A Study on the Flat-Plate Solar Collector Performance taking into account of the Collector Thermal Capacitance (집열기(集熱器) 열용량(熱容量)을 고려(考慮)한 평판형집열기(平板型集熱器) 성능(性能)에 관(關)한 연구(硏究))

  • Lee, Young-Soo;Yong, Ho-Taek;Seoh, Jeong-Ill
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.17-23
    • /
    • 1982
  • This paper presents the performance of a Flat-Plate Solar Collector in case of taking into account of the thermal capacitance. The relationships among energy absorption, overall heat loss coefficient and temperature distribution are studied theoretically. And the thermal capacitance of the collector is considered. Also, the results obtained are compared with those of model in which the thermal capacitance is neglected. As the results of this study, the efficiency of the collector having double glazing is higher than the other cases. It is shown that the fluid temperature in the tubes are rising close to linearly. The variations of the outlet temperature of tubes in the model neglecting the effect of thermal capacitance are tend to represent lower slope than that of considering the effect of thermal capacitance.

  • PDF

Thermal Performance of Air receiver with a Change of Flow direction for Dish Solar Collector (공기식 흡수기의 유동 방향에 따른 $5kW_t$급 접시형 태양열 집열기의 열성능 분석)

  • Seo, Joo-Hyun;Kang, Kyung-Moon;Lee, Ju-Han;Oh, Sang-June;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.182-185
    • /
    • 2008
  • The thermal performance of air receiver with a change of flow direction for dish solar collector. This system is installed and operated in Incheon, Korea. The thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. Experiments are being carried out to investigate the thermal performance variation of the receivers with several design parameters such as the shape of the receiver, the flow directions and the flow rate of air. First, air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. Second, air flows into the backside of the receiver, Which is the forward side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 1 exit. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected.

  • PDF

Circular Fresnel POF(Plastic Optical Fiber) Daylighting System Performance Evaluation Study (원형 프레넬 집광형 POF 주광 조명시스템 성능 평가 연구)

  • Kang, Eun-Chul;Choi, Yong-Jun;Yoon, Kwang-Sik;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • CF(Circular Fresnel) POF(Plastic Optical Fiber) daylighting system is a beam daylighting system utilizing solar direct beam radiation. In this study, a CF POF daylighting system has been introduced, developed and applied to KIER test buildings. The CF POF daylighting system consists of three parts: light collector, light transmitter and light diffuser. The light collector includes a Circular Fresnel lens focusing solar direct illuminance by sun tracking. The light transmitter contains the POF cable which has light transmission loss of 4.5% per meter. The light diffuser has about 80% diffuser efficiency. This study aims to evaluate of POF daylighting system performance. At the results of a CFPOF system performance evaluation, the theoretical CFPOF system efficiency was 41.9% and the actual CFPOF system efficiency at the KIER test building was 37.5%. The difference was due partly to the connecting efficiency.

A Study on Thermal Performance of Heat Pipes with Different Condenser Shape for Evacuated Tubular Solar Collector (태양열 집열기용 히트파이프 응축부 형상 변화에 따른 열성능 연구)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • The purpose of this study was experimentally to investigate thermal performance of heat pipe for evacuated tubular solar collector. Two sets of evacuated tubular solar collector with different condenser shape of heat pipe were prepared. The experiments were performed under the same operating condition with an indoor testing apparatus. Also, the experiments were carried out various testing conditions including inclination, flow rate, and incident heat flux. The results of thermal performance of collector with enlarged condenser showed that $F_R({\tau}{\alpha})$ was 0.6572 and $F_RU_L$ was -2.0086 at $40^{\circ}$. And the results of thermal performance of collector with straight condenser showed that $F_R({\tau}{\alpha})$ was 0.6233 and $F_RU_L$ was -1.4996 at the same inclined angle.

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

Experimental Performance Comparison of Water Type Glazed and Unglazed PV-Thermal Combined Collectors (실험에 의한 Glazed형과 Unglazed형 액체식 PVT 집열기의 에너지성능 비교 분석 연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. The PVT collectors can produce more energy per unit surface area than side by side PV modules and solar thermal collectors. There are two types of water type PVT collectors, depending on the existence of glass cover over PV module; glass-covered(glazed) PVT module, which produces relatively more thermal energy but has lower electrical yield, and uncovered(unglazed) PVT module, which has relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of the water-based PVT combined collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT combined collectors were measured in outdoor conditions, and the results were compared.