• Title/Summary/Keyword: collector

Search Result 1,346, Processing Time 0.025 seconds

Fundamental Design of Cyclone Collector for Oil Mist (오일미스트용 사이클론 집진기에 관한 기초 설계 -오일미스트 및 슬러지 입자 융합연구-)

  • Jang, Sung-Cheol;Ahn, Hwi-Woong;Lee, Chan-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.223-227
    • /
    • 2013
  • Dust collecting performance of cyclone collector for oil mist was alalyzed in the study. The purposes of using cutting fluid during cutting have been colling, lubricating, chip washing and anti-corroding. However, the present manufactaring industry restricts the use of cutting fluid because cutting fluid confains poisonous substances which are harmful to the human body. Also, the optimum design oil-mist collector. The new oil mist collector was designed. In the near future, this device must be tested in the real machining center and CNC machine. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. The model(A, B Type cyclone) of the set of fixture and alveolus are made by using a CAE software. Finally, we have obtained a model A Type solution by using orthogonal array. Therefore, it could be confirmed that as the model-A was increased and model-B was decreased, cut diameter was decreased.

Performance Prediction of a Solar Power System with Stirling Engine (Matching Collector/Receiver with Engine/Generator Systems) (스털링엔진 태양열 발전시스템의 성능예측(집열기.수열기 및 엔진.발전기 시스템의 조화))

  • Bae, Myung-Whan;Chang, Hyung-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.794-799
    • /
    • 2001
  • The simulation analyses of a solar power system with monolithic concentrator by using a stirling engine are carried out to predict the system performance in four test sites. The site has different intensities and distributions of direct solar radiation respectively. Seoul, Pusan and Cheju in Korea, and Naha in Japan are selected as test sites. To accomplish the same demand of a 25 kW output that the power level of a system has, it needs to take the matching of collector/receiver with engine/generator systems. In such a case, also, the size of the collector is sometimes adjusted. In this study, the diameter of the collector is decided by using the solar radiation of design point, which is defined as the sum of average and standard deviation $\sigma$ of maximum direct solar radiation distribution for a day during a year in the respective test site. It is found that the average power output during the system operating time in the case of slope error ${\sigma}_s=2.5$ is within the range of 9 to 13 kW.

  • PDF

A Study on Solar Light Collector using Fresnel Lens Film (프레넬 필름을 이용한 태양광 채광시스템 연구)

  • Jeong, H.G.;Han, S.B.;Jung, B.M.;Lee, E.J.;Lim, S.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2002
  • Solar daylighting system provides free and comfort lighting, but its design and control has been key issue due to heavy light collecting system. One of the solutions for the heavy weight issues would be using a light framed film such as fresnel and prism lens. This prototype system consists of light collector, light transformer and light guide luminaire. The light collector which is installed at window or the rooftop concentrates solar light, the collected beam is converted to suitable light by the light transformer. and the prism light guide luminaire has been used to distribute light emitted from light transformer for illumination. In this paper, the design concept and performance of light collector in this prototype system are presented.

An Experimental Study of PV/Thermal Combined Collector Module (평판형 액체식 PVT 모듈의 성능 실험 분석)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.780-785
    • /
    • 2009
  • The photovoltaic/thermal collectors (PV/T collectors) combine the solar thermal collector and photovoltaic modules. They can produce thermal energy in the form of hot air or hot water, and converts solar radiation into electricity. The collecctors can improve the electrical performance of PV modules as the heat from the PV module carried away by the thermal part of the system keeping temperatures lower. The basic water cooled PVT collector has metallic water pipes attached to the back of a PV collector. There are main parameters affecting the performance (electrical and thermal) of PVT collectors. This paper analyzed the experimental performance of glazed water PVT module, considering the parameters of solar radiation, inlet water temperature and ambient temperature. It found that solar radiation is the dominant factor for the electrical performance of the collector, and for the thermal performance the inlet water temperature and ambient temperature appeared to be more related.

  • PDF

field Study on Effects of Runoff Reduction in the Infiltration Collector Well (현장자료를 이용한 침투집수정의 유출저감 효과에 관한 연구)

  • Jang, Bok-Jin;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.611-618
    • /
    • 2002
  • In order to investigate the performance of the infiltration collector well and its effect on the runoff reduction, real-time field measurements are carried out. Based on these field data measured at Seongnam, Osan and Cheongju sites, the runoff reduction volumes and the peaks-cut-rate are quantitatively analyzed and compared with the total rainfall amount, the 10min averaged and the 10min maximum rainfall intensity. This results show that the infiltration collector well is very effective to reduce the runoff in urban area, which gives environmentally the positive to supply ground waters. It is also presented that the infiltration collector well is able to reduce up to 70% of the runoff and 40~70% of peaks, compared to a general one.

Analysis on the Thermal Performance of Flat-plate Solar Collector for Greenhouse Heating(I) (온실 난방을 위한 평판형 태양집열기의 열적성능 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Lee, Seung-Hwan;Lee, Suk-Gun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.46-56
    • /
    • 1998
  • This study was performed to investigate thermal performances of two different types of flat-plate solar collector systems; natural circulation system and forced circulation system. Conclusions obtained from this study are summarized as follows; 1) In the natural circulation system, the total heat amounts retrieved by starting recovery soon after sunrise were ranged from 10.28 to 17.20MJ/m$^2$, while the total heat amounts retrieved by starting recovery after sunset were ranged from 5.31 to 10.77MJ/m$^2$. 2) The collector efficiency in natural circulation system were ranged from 51.1% to 54.1% when the collected heat was retrieved after sunrise and were 65.8~78.0% when the collected heat was retrieved soon after sunset. 3) According to the regression analysis between fluid flow rates and fluid temperature difference at inlet and outlet of collector pipe, there was high regressive corelations with regression coefficient, r, of 0.982. 4) The collector efficiencies estimated for forced circulation system were 73.1~88.6%, and 78.4~94.8%, and 64.2%~74.5%, respectively when fluid circulation rates were 4.2 l/min, and 7.0 l/min, respectively.

  • PDF

Performance Comparison of Dish Solar Collector With Mirror Arrays & Receiver Shapes (반사경 배치와 흡수기 형상에 따른 접시형 고온 태양열 시스템 성능비교)

  • Ma, Dae-Sung;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • In order to analyze the performance comparison of dish solar collector with mirror arrays and receiver shapes, the radiative heat flux distribution inside the cavity receiver is numerically investigated. The solar irradiation reflected by dish solar collector is traced using the Monte-Carlo method. Five different dish solar collectors and three different cavity receivers are considered. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference dish solar collector and four different arrays of twelve identical parabolic-shaped mirror facets of which diameter are 0.4 m are used. Their reflecting areas, which are $1.5\;m^2$, are the same. Three different cavity receiver shapes are dome, conical, and cylindrical. In addition, the radiative properties of the concentrating surfaces can vary the thermal performance of the cavity receiver so that variation of the surface reflectivity of each mirror is considered. Based on the calculation, the design information of dish solar collector for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4 INLINE has the best performance in mirror arrays except perfect mirror.

A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes (진공관식 태양열 집열 튜브의 열성능 비교 분석)

  • Hyun, June-Ho;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

Structure and Electrical Properties of SiGe HBTs Designed with Bottom Collector and Single Metal Contact (Bottom Collector와 단일 금속층 구조로 설계된 SiGe HBT의 전기적 특성)

  • Choi, A.R.;Choi, S.S.;Yun, S.N.;Kim, S.H.;Seo, H.K.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.187-187
    • /
    • 2007
  • This paper presents the electrical properties of SiGe HBTs designed with bottom collector and single metal layer structure for RF power amplifier. Base layer was formed with graded-SiGe/Si structures and the collector place to the bottom of the device. Bottom collector and single metal layer structures could significantly simplify the fabrication process. We studied about the influence of SiGe base thickness, number of emitter fingers and temperature dependence (< $200^{\circ}C$) on electrical properties. The feasible application in 1~2GHz frequency from measured data $BV_{CEO}$ ~10V, $f_r$~14 GHz, ${\beta\simeq}110$, NF~1 dB using packaged SiGe HBTs. We will discuss the temperature dependent current flow through the e-b, b-c junctions to understand stability and performance of the device.

  • PDF