• Title/Summary/Keyword: cold plate

Search Result 344, Processing Time 0.025 seconds

A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact (고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구)

  • 손세원;김희재;황도연;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF

Compression tests of cold-formed channel sections with perforations in the web

  • Kwon, Young Bong;Kim, Gap Deuk;Kwon, In Kyu
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.657-679
    • /
    • 2014
  • This paper describes a series of compression tests performed on cold-formed steel channel sections with perforations in the web (thermal studs) fabricated from a galvanized steel plate whose thickness ranged from 1.0 mm to 1.6 mm and nominal yield stress was 295 MPa. The structural behavior and performance of thermal studs undergoing local, distortional, or flexural-torsional buckling were investigated experimentally and analytically. The compression tests indicate that the slits in the web had significant negative effects on the buckling and ultimate strength of thin-walled channel section columns. The compressive strength of perforated thermal studs was estimated using equivalent solid channel sections of reduced thickness instead of the studs. The direct strength method, a newly developed and adopted alternative to the effective width method for designing cold-formed steel sections in the AISI Standard S100 (2004) and AS/NZS 4600 (Standard Australia 2005), was calibrated to the test results for its application to cold-formed channel sections with slits in the web. The results verify that the DSM can predict the ultimate strength of channel section columns with slits in the web by substituting equivalent solid sections of reduced thickness for them.

Design of Rolling Pass Schedule in Copper Thin Foil Cold Rolling According to Roll Crown of 6 High Mill (6단 압연롤 크라운을 고려한 동극박 냉간 압연 패스스케줄 설계)

  • Lee, Sang-Ho;Ok, Soon-Young;Hwang, In-Youb;Hwang, Won-Jea;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.66-72
    • /
    • 2008
  • During the plate and foil cold rolling process, considerable values of the force of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation legion. Rolled copper foils should be characterized by a good quality and light dimensional tolerances. Because of automation that is commonly implemented in flat product rolling mills, these products should meet the requirements of tightened tolerances, particularly strip thickness, and feature the greatest possible flatness. The shape of the roll gap is influenced by the elastic deformation of rolls parts of the rolling process affecter of the pressure force. However, to control roll deformation should be difficult. Because the foil thickness is very thin and the permissible deviations in the thickness of foil are small. In this paper, FE-simulation of roll deformation in thin foil cold roiling process is presented.

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

A Study on Microbiological Quality & Safty Control of Cold Sybean Noondles serviced by an Industry Foodservice Establishment (산업체 급식소에서 제공되는 콩국수의 미생물적 품질관리에 관한 연구( I ))

  • 주선의;김혜영
    • Korean journal of food and cookery science
    • /
    • v.4 no.2
    • /
    • pp.71-79
    • /
    • 1988
  • This study is written to look into microbiological quality by passage of time and holding methods after making foods, by means of evaluating time, temperature and microbiological quality during various phases in product flow of cold soybean noodles serviced by an industry feeding operation for 500 persons a day, measuring pH & Aw and analyzing factors affecting microbiological growth conditions. The results were as follows: 1. According to phases in product flow of cold soybean noodles, it showed 15.6 hours of mean of needed time, $24.2^{\circ}C$ of room temperature, 5.1~7.6 of pH value & 0.95~0.98 of Aw except dry noodles. These conditions were good for multipling of microbe, and the phases with potential sanitary danger were ingredient, pre-preparation, holding before assembly and service and assembly & service. 2. As for holding methods and passage of time, holding at cold table was more effective than holding at room temperature as time past. 3. As for equipments using for making food, dipper, basket, kitchen board & kitchen towel showed high microbiological value in total aerobic plate counts and kitchen towel and stainless-steel were showed high microbioloical value in coliform counts. 4. E. coli, food poisoning bacteria was detected from barrel filled with soybean soup and also soybean itself.

  • PDF

Survey on Bacteriological Contamination of Restaurants in Seoul Area (서울지역 대중음식점의 위생상태에 관한 미생물학적 조사연구 - 물수건, 냉면육수, 엽차를 중심으로 -)

  • Shin Jung Sik;Park Sang Huun
    • Journal of environmental and Sanitary engineering
    • /
    • v.1 no.1 s.1
    • /
    • pp.41-46
    • /
    • 1986
  • This study was performed to investigate the sanitation of restaurants in Seoul Area. The subjects were 153 wet towels, 64 cold noodle soup and 190 barely tea. The results were as follows: In wet towels: The detected rate of standard plate counts was $86.9\%$ (133 samples) and average count was $1.8\times10^3/g$ $the detected rate of coliform was $37.9\%$ (58 samples) and average count by MPN method was $2.0\times10^3/100g$, the detected rate of fecal coliform was $15.7\%$ (24 samples) and average count by MPN method was $3.2\times10/100g$. In cold noodle soups: The detected rate of standard plate counts was $100\%$ (64 samples) and average count was $9.4\times10^5/ml$, the detected rate of coliform was $75\%$ (48 samples) and average count by MPN method was $6.0\times10^5/100ml$, the detected rate of fecal coliform was $51.6\%$ (33 samples) and average count by MPN method was $3.4\times10^3/100ml$. In barely tea: The detected rate of standard plate counts was $87.4\%$(166 samples) and average count was $5.8\times10^3/ml$the detected rate of coliform was $66.3\%$ (126 samples) and average count by MPN method was $3.9\times10^3/100ml$, the detected rate of fecal coliform was $32.6\%$ (62 samples) and average count was by MPN method was $4.7\times10/100ml$.

  • PDF

Fatigue Life Evaluation of Spot Weldment Using DCPDM (직류전위차법을 이용한 점용접부의 피로수명 평가)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

Assessment of cold-formed steel screwed beam-column conections: Experimental tests and numerical simulations

  • Merve Sagiroglu Maali;Mahyar Maali;Zhiyuan Fang;Krishanu Roy
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.515-529
    • /
    • 2024
  • Cold-formed steel (CFS) is a popular choice for construction due to its low cost, durability, sustainability, resistance to high environmental and seismic pressures, and ease of installation. The beam-column connections in residential and medium-rise structures are formed using self-drilling screws that connect two CFS channel sections and a gusset plate. In order to increase the moment capacity of these CFS screwed beam-column connections, stiffeners are often placed on the web area of each single channel. However, there is limited literature on studying the effects of stiffeners on the moment capacity of CFS screwed beam-column connections. Hence, this paper proposes a new test approach for determining the moment capacity of CFS screwed beam-column couplings. This study describes an experimental test programme consisting of eight novel experimental tests. The effect of stiffeners, beam thickness, and gusset plate thickness on the structural behaviour of CFS screwed beam-column connections is investigated. Besides, nonlinear elasto-plastic finite element (FE) models were developed and validated against experimental test data. It found that there was reasonable agreement in terms of moment capacity and failure mode prediction. From the experimental and numerical investigation, it found that the increase in gusset plate or beam thickness and the use of stiffeners have no significant effect on the structural behaviour, moment capacity, or rotational capacity of joints exhibiting the same collapse behaviour; however, the capacity or energy absorption capacities have increased in joints whose failure behaviour varies with increasing thickness or using stiffeners. Besides, the thickness change has little impact on the initial stiffness.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

The behavior of branch-rotated and chord web-stiffened T-joints in Cold-formed Square Hollow Sections (지관이 회전되고 주관 웨브 보강한 각형강관 T형 접합부의 거동에 관한 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Jeong, Sang Min;Kang, SeokGyu;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.673-681
    • /
    • 2003
  • This paper describes the experiment that determines the ultimate strength of new uniplanar T-joints made of cold-formed square hollow sections. The new T-joint focused on the configuration of a branch member that is oriented 45 degrees to the plane of the truss and welded to the chord member whose web is stiffened with plate. The strength and failure mode are examined using the existing strength formula for the branch-rotated T-joint $(16.7{\leq}2{\gamma}(B/T){\leq}33.3$ and $0.63{\leq}{\beta}(b1/B){\leq}0.7)$. The test result shows that the capacity of the stiffened joint increases with thicker stiffening plate. The failure mode of the specimen $(2{\gamma}=33.3)$ is stiffened with plate changes from M2 (flange failure) to M3 (combined failure). On the other hand, the failure mode of the specimen $(2{\gamma}=16.7)$ is stiffened with plate changes from M1 ( web failure) to M2 (flange failure)