• Title/Summary/Keyword: cold joint

Search Result 189, Processing Time 0.034 seconds

Relationship between Joint Space and Craniofacial Morphology in Patients with Craniomandibular Disorders (두개하악장애환자에서 악관절강폭과 측모두부형태와의 관계에 관한 연구)

  • Myung-Seok Seo;Kyung-Soo Han;Min Shin
    • Journal of Oral Medicine and Pain
    • /
    • v.17 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • This study was performed for the purpose of investigating the relation between width of temporomandibular joint space and craniofacial morphology in patients with CMDs. The subjects utilized here were aged from 16 to 63 years old and 19 male and 46 female. For the study, each patient was taken radiographs by Transcranial and Lateral Cephalographic projection and the films were traced with routine method. The measured items were anterior, superior, posterior joint space and relative condylar position to the deepest part of glenoid fossa in Transcranial film and items related vertical and/or horizontal growth in Cephalogram. The data were processed with SPSS/PC+ package for statistical analysis. The obtained results were as follows : 1. Anterior joint space in affected side were wider than that of unaffected side, but for superior and posterior joint space, the value of unaffected side were more than those of affected side. 2. Superior or posterior joint space of affected side were significantly correlated with items related vertical growth, such as ramus height, Jarabak ratio, FMA. From this, the following cold be proposed, the wider the joint space of superior or posterior aspect of affected side was, the more the patient showed growth pattern of counter clockwise. 3. Superior or posterior joint space of affected side were significantly correlated with items related horizontal growth, such as SNPo, NAPo, APDI and ANB. From this the following could be proposed, the wider the joint space of superior or posterior aspect of affected side was, the more the patient showed anterior displacement of mandible. 4. It would be proposed that the diagnositic value of superior and posterior joint space of affected side in transcranial radiograph was excellent.

  • PDF

Peel-tension Fatigue Strength of Mechanical Press Joints of Cold Rolled Steel Sheet (냉간 압연강 판재 기계적 접합부의 인장-박리 피로 강도)

  • Lee, Man-Suk;Park, Jong-Min;Kim, Taek-Young;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.42-48
    • /
    • 2012
  • Peel-tension fatigue experiments were conducted for investigating on fatigue strength of mechanical press joints of SPCC steel sheet used in the field of the automobile industry. In addition, finite element method analysis on the peel-tension specimen was conducted using HyperMesh and ABAQUS softwares. The cold rolled mild steel was used to join the T-shaped peel-tension specimen with a button diameter of 5.4 mm and a punch diameter of 8.3 mm. The fatigue limit load amplitude was found to be 112.4 N at the number of cycles 106, indicating that the ratio of fatigue limit load to static peel-tension strength was about 8%. This value suggests that the mechanical press joint is highly vulnerable to peel-tension load rather than to tensile-shear load, considering that the ratio of fatigue limit load to static tensile-shear strength was about 43%. Fatigue failure mode was found to be interface-failure mode.

Weldability of HY type High Strength-Toughness Steel (HY계 고강도 고인성강의 용접성)

  • ;;;Ahn, S. K.;Shim, I. O.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.65-76
    • /
    • 1995
  • Weldability of DS100 and HY type high strength-toughness steel plates, tentatively produced as domestic production, was investigated. DS100 and DS130A had nearly same hardenability in HAZ in spite of its difference in Ceq. Based upon the y-groove test results, cold cracking susceptibility of DS130 was superior to that of DS100 because of its lower hydrogen level in weld metal. Solidification cracking tested by the Trans-Varestraint test was occured in all of the weld metals, and its susceptibility was high in the row of DS100, DS130A and DS130B. However, no liquation cracking and ductility-dip cracking tested by the Longi-Varestraint test with 6.0% augmented strain were detected in base metal and reheated weld metal. Toughness in the GMA welding joint was satisfied with the relative Mill Spec, even though welded joint of DS100 had relatively low impact energy especially at the weld metal.

  • PDF

Deformation Analysis of Carrier Pipe for Cold Shrinkable Joint (CSJ 개발을 위한 캐리어 파이프의 변형해석)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, Ho-Jeong;Ryu, Jeong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.314-319
    • /
    • 2010
  • This paper represents the results of study on Extra High Voltage Power Cable Connection System Development. The purpose is to evaluate structural safety by numerical analysis for the relaxation of electric field concentration and by structural analysis of Carrier Pipe for easy installation of High Insulating Rubber Sleeve in the field, which is core technique of connection system. According to the results, the thickness of Carrier Pipe needs at least 9mm by optimization analysis of deformation behavior and insulating design & relaxation of electric field concentration. The result of contraction behavior of the connection part can be demonstrated with the same result of electric field relaxation analysis at the boundary of the electrode inserted into the insulating rubber sleeve.

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Following the Cold War, both the United States' military operational concept and the Republic of Korea Army's developmental study (탈냉전기 미국의 군사작전 개념과 한국군 발전방향 연구-합동작전을 중심으로)

  • Lee, Se-Han
    • Journal of National Security and Military Science
    • /
    • s.2
    • /
    • pp.121-163
    • /
    • 2004
  • Science technique development expanded into, not only land, sea, and air operations but also those of airspace, and cyber battle spaces. It is generally accepted at this time that space centric operations currently cannot be effectively divided from air operations. However, science and technology advancements make it possible to integrate Army, Navy, Airforce, and Marine forces into effective operations as never before. The Republic of Korea Armed Forces needs to establish a more effective joint concept. The US military, considered by many experts as the most effective in the world, understands the necessity of joint operations and accordingly has highly developed its own concept of joint operations. The US joint operational concepts demonstrated their effectiveness during the Iraqi War by dominating the battlefield through effective use of all combat and non-combat power. Following the US Iraqi War experience, the US Department of Defense continued to enhance Joint Capability through the acceleration of US Military Transformation involving all components. The future national security of the Republic of Korea, faced with the peculiarity of communist threat in the form of North Korea, and the conflicting interest of four strong powers; the United States, China, Japan, and Russia, depends on small but strong armed forces employing all available combat power through effective National and Military Strategy, and considering domestic and international constraints. In order to succeed in future wars, military operations following joint operational concepts must effectively employ all available combat power in a timely manner. The Republic of Korea Armed Forces must establish a joint forces concept in order to integrate all available combat power during employment. Therefore we must establish military operations that develop the military structure and organization, doctrine, weapon systems, training and education of our armed forces based on the key concept of joint operations.

  • PDF

Application limit of Yield Line Analysis on Welded T-joints in Cold-Formed SHS Sections (냉간성형 각형강관 T형 접합부의 항복선해석 전용한계)

  • Kang, Chang Hoon;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.315-324
    • /
    • 2004
  • This study performs a yield line analysis of welded T-joints in cold-formed Square Hollow Sections (SHS) with the branch in axial compression. The existing yield line models proposed by Koto, Packer, Zhao, and CIDECT and the proposed yield line model of the previous study are compared, using the existing test results of welded T-joints in cold-formed SHS. The yield line model suggested in the previous paper, which is based on the simplified yield line analysis, is reviewed to evaluate its application limit on cold-formed SHS T-joints. In the proposed model, the round corner of the cold-formed SHS section and weld size are taken into account. Finally, the validity range of yield line analysis is determined by observing the actual failure modes and comparing the test value with the analysis value, set as ${\beta}^{\prime}{\leq}0.8$ where ${\beta}^{\prime}=0.8$, ${\beta}^{\prime}=b_1^{\prime}/b_0^{\prime}$, $b_1{^{\prime}}=b_1+t_0$ and $b_0{^{\prime}}=b_0-t_0$.

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

A Phenomenological Perspective and Meaning of joint-pain's Experience of Women's in an island (관절통을 경험한 도서지역 여성의 체험연구)

  • Kim, Gan-Woo
    • Journal of muscle and joint health
    • /
    • v.5 no.2
    • /
    • pp.265-285
    • /
    • 1998
  • This Qualitative nursing research was made with a hermeneutic phenomenological approach to find out the meaning and nature of human's experience. The purpose of the inquiry is to find out the meaning and to understand the nature of Joint pain's experience of women in the island and to apply the result to nursing practice. The study was guided by Shin Kyung Rim's four step that revised van Manen's method for doing research. The method of inquiry included : turning to interesting phenomenon. inquiring and investigating experience as it was lived rather than as conceptualized ; reflecting and analyzing essential themes which characterize phenomenon ; and describing phenomenon through art and literature. Multiple strategies for data collecting were needed : deep face to face interview ; analysis of joint pain of women's writings ; describing and analysis of examples of the phenomenon in art, literature. Through this process essensial them of the experience was emerged : Misery that I would like to cut off my body, Sea wind soaking deeply into the bones, Dull pain from the postpartum cold wind, The another suffer I should endure by myself, Recrudesce despite all the try I have made, Often forgetting the pain of every Joint for hardship of life. Findings from artistic and creative inquiry further was validated and meaning was discovered. The study illuminated meaning and simultaneously validated the phenomenological research process. Essential themes for understanding women joint pain's experience, implications, for education, research and practice, direction and need for continuing inquiry were identified.

  • PDF