• Title/Summary/Keyword: cold box

Search Result 130, Processing Time 0.025 seconds

Performance Improvement of Precooling Process and Cold Box in Hydrogen Liquefaction Process Using LNG Cold Energy (LNG 냉열이용 액체수소 제조공정의 예냉 및 Cold box의 성능 개선 연구)

  • Yun, Sang-Kook;Yoon, Na-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.56-61
    • /
    • 2020
  • For the hydrogen liquefaction, the large amount of energy is consumed, due to precooling, liquefaction and o-p conversion processes. The aim of this work is to improve the performance of hydrogen liquefaction process by introducing the new energy saving processes, that are the liquid nitrogen precooling process by using LNG cold energy, and the new design of cold box insulation using cold air circulation. The results show that the indirect use of LNG cold energy in precooling process enables not only to get energy saving, but to make safer operation of liquefaction plant. In new cold box, the energy loss of equipments could be reduced by nearly 35%~50% compared to the present perlite insulation, if insulation structure is organised as 3mm steel wall/20cm PUF/5cm air/20cm PUF/equipment. Additionally the equipments installed in cold box can get cooling effect, if the temperature is higher than the temperature of cold air. The application of this results can gives to increase the liquid yield of about 50% substantially in industrial hydrogen liquefaction plant.

Thermal Analysis of a Cold Box for a Hydrogen Liquefaction Pilot Plant with 0.5 TPD Capacity (0.5 TPD 급 수소액화 파일럿 플랜트의 콜드박스 열해석)

  • KIM, HYOBONG;HONG, YONG-JU;YEOM, HANKIL;PARK, JIHO;KO, JUNSEOK;PARK, SEONG-JE;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.571-577
    • /
    • 2020
  • Thermal analysis was performed for a cold box of a hydrogen liquefaction pilot plant with 0.5 ton/day capacity. The pilot plant has adopted a hydrogen liquefaction process using two-stage helium Brayton cycle with precooling of liquid nitrogen. The cold box for hydrogen liquefaction has generally vacuum insulation but inevitable heat invasion by conduction and radiation exists. The heat loads were calculated for cold box internals according to multilayer insulation emissivity. Total heat load of 181.7 W is estimated for emissivity of 0.03 considered in field condition.

Vacuum system design of a 10 ton/day class air liquefaction cold box for liquid air energy storage

  • Sehwan, In;Juwon, Kim;Junyoung, Park;Seong-Je, Park;Jiho, Park;Junseok, Ko;Hankil, Yeom;Hyobong, Kim;Sangyoon, Chu;Jongwoo, Kim;Yong-Ju, Hong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • A vacuum system is designed for thermal insulation of a 10 ton/day class air liquefaction cold box for liquid air energy storage. The vacuum system is composed of a turbomolecular pump, a backing pump and vacuum piping for the vacuum pumps. The turbomolecular pump is in combination with the backing pump for pumping capacity. The vacuum piping is designed with system installation conditions, such as distance from the cold box, connections to vacuum pumps and installation space. The capacity of the vacuum pump combination, namely pumping speed, is determined by analysis of the vacuum system, and pump-down time to 1×10-5 mbar is estimated. Vacuum piping conductance, system pumping speed and outgassing rate are calculated for the pump-down time with the ultimate pumping speed range of the vacuum pump combination of 1400 - 2300 l/s. Although the pump-down time gets shorter by larger capacity vacuum pumps, it mainly depends on target vacuum degree and outgassing rate in the cold box. The pump-down time is estimated as 3 - 6 hours appropriate for cold box operation for the pumping speed range. Considering the outgassing rate has uncertainty, the vacuum pump combination with pumping speed of 1900 l/s is chosen for the vacuum system, which is middle value of the pumping speed range.

Study of Thermal Storage Technology using Phase Change Material (잠열물질을 이용한 열저장 기술에 관한 연구)

  • Kim, Jeong-Yeol;Chung, Dong-Yeol;Park, Dongho;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The cold chain system in South-East Asia is requiring to maintain freshness of refrigerated or frozen food. In this study, Thermal storage system using Phase change material (PCM) was developed and evaluated its performance about temperature and cold keeping time. For various application of cold chain system, we developed portable cold box, cold roll container and freezing station. Keeping time on laboratory tests of portable cold box in case of refrigeration and freezing were 6 hours and 4 hours, respectively. Cold container was developed to 2.5 ton scale. Evaluation in Indonesia, it was showed to keep the setting temperature of $-10^{\circ}C$ over 40 hours at $30^{\circ}C$ of ambient air. Freezing station using PCM was kept over 24 hours under $-20^{\circ}C$.

  • PDF

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis (DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

A Study on the Development for a Cryogenic Air Separation Unit (심랭식 공기분리장치 개발 연구)

  • 문흥만
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.132-135
    • /
    • 2001
  • Cryogenic air separation unit(ASU) was developed about 100 year ago in Europe. However, because there is not any ability of process design or manufacturing of ASU in Korea, many ASUs come from advanced countries every year. The purpose of this study is the development of cryogenic air separation unit by our own ability, especially cold box for nitrogen production. On this study, we developed the computer program for physical properties of gases and process simulation. We also did process design and manufactured of cold box, including air separation column, liquid air heat exchanger and condenser. The result of cold box test was successful.

  • PDF

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

The maintenance record of the KSTAR helium refrigeration system

  • Moon, K.M.;Joo, J.J.;Kim, N.W.;Chang, Y.B.;Park, D.S.;Kwag, S.W.;Song, N.H.;Lee, H.J.;Lee, Y.J.;Park, Y.M.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.6-9
    • /
    • 2013
  • Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB#1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there's another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.