• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.036 seconds

The effective noise reduction method in infrared image using bilateral filter based on median value

  • Park, Chan-Geun;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.27-33
    • /
    • 2016
  • In this paper, we propose the bilateral filter based on median value that can reduce random noise and impulse noise with minimal loss of contour information. In general, EO / IR camera to generate a random or impulse noise due to a number of reasons. This noise reduces the performance of detecting and tracking by signal processing. To reduce noise, our proposed bilateral filter sorts the values of the target pixel and the peripheral pixels, and extracts a median filter coefficients of the Gaussian type. Then to extract the Gaussian filter coefficient involved with the distance between the center pixel and the surrounding pixels. As using those filter coefficients, our proposed method can remove the various noise effectively while minimizing the loss of the contour information. To validate our proposed method, we present experimental results for several IR images.

Multiresolution Edge Detection in Speckle Imagery (스펙클 영상에서의 다해상도 에지 검출)

  • 남권문;박덕준;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.78-89
    • /
    • 1992
  • In this paper, a multiresolution edge detction algorithm for speckle images is proposed. Due to the signal dependency of speckle images, the number of edge points detected depends on the local average intensity. Thus the edge detection method independent of the average intensity is required to detect properly real significant changes in an original signal. In the proposed method, candidate area is first selected based on the statistical propeties of speckle images,i.e., based on the busyness measure such as the CoV(coefficient of variation) and the difference between the real and theoretical CDF(cumulative density function). Then the real edges are extracted in a multiresolution environment. Computer simulation with test images shows that the proposed method reduces significantly false edges in relatively homogeneous areas while detects fine details properly.

  • PDF

Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave

  • Li, Jun;Pan, Yang Yang;Li, Jiao sheng;Li, Rong;Zheng, Tao
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.230-235
    • /
    • 2014
  • Two-step quadrature phase-shifting digital holography based on the calculated intensity of a reference wave is proposed. In the Mach-Zehnder interferometer (MZI) architecture, the method only records two quadrature-phase holograms, without reference-wave intensity or object-wave intensity measurement, to perform object recoding and reconstruction. When the reference-wave intensity is calculated from the 2D correlation coefficient (CC) method that we presented, the clear reconstruction image can be obtained by some specific algorithm. Its feasibility and validity were verified by a series of experiments with 2D objects and 3D objects. The presented method will be widely used in real-time or dynamic digital holography applications.

Joint-transform Correlator Multiple-image Encryption System Based on Quick-response Code Key

  • Chen, Qi;Shen, Xueju;Cheng, Yue;Huang, Fuyu;Lin, Chao;Liu, HeXiong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.320-328
    • /
    • 2019
  • A method for joint-transform correlator (JTC) multiple-image encryption based on a quick-response (QR) code key is proposed. The QR codes converted from different texts are used as key masks to encrypt and decrypt multiple images. Not only can Chinese text and English text be used as key text, but also symbols can be used. With this method, users have no need to transmit the whole key mask; they only need to transmit the text that is used to generate the key. The correlation coefficient is introduced to evaluate the decryption performance of our proposed cryptosystem, and we explore the sensitivity of the key mask and the capability for multiple-image encryption. Robustness analysis is also conducted in this paper. Computer simulations and experimental results verify the correctness of this method.

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

  • Belaoued, Mohamed;Mazouzi, Smaine
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.644-660
    • /
    • 2016
  • The real-time detection of malware remains an open issue, since most of the existing approaches for malware categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper balance between these two characteristics is very important, especially for such sensitive systems. In this paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of the set of Application Programming Interfaces (APIs) called by a program and some technical PE features (TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs using the chi-square ($KHI^2$) measure, and then the Phi (${\varphi}$) coefficient was used to classify the features in different subsets, based on their relevance. We evaluated our method using different classifiers trained on different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 seconds.

Fingerprint Detection Using Canny Filter and DWT, a New Approach

  • Islam, Md. Imdadul;Begum, Nasima;Alam, Mahbubul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • This paper proposes two new methods to detect the fingerprints of different persons based on one-dimensional and two-dimensional discrete wavelet transformations (DWTs). Recent literature shows that fingerprint detection based on DWT requires less memory space compared to pattern recognition and moment-based image recognition techniques. In this study four statistical parameters - cross correlation co-efficient, skewness, kurtosis and convolution of the approximate coefficient of one-dimensional DWTs are used to evaluate the two methods involving fingerprints of the same person and those of different persons. Within the contexts of all statistical parameters in detection of fingerprints, our second method shows better results than that of the first method.

Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis (선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘)

  • Kang, Seung-Hyun;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

Physical Properties of Recycled Sidewalk Pavement Using Wood Chip (Wood Chip을 사용한 자원순환형 보도 포장체의 물성에 관한 연구)

  • Yu, Hyeok-Jin;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The purpose of this study is to find problems about pedestrian road of tourist resort and to make new type of sidewalk pavement with wood chip and binder using urethane resin on the parks and tourist resort. The wood chip pavement has new economics and durability with comfortable texture. Samples of these pavement materials were tested for tensile strength, permeability and ball rebound value. Also, after immersion for 24 hours, tensile strength, samples' thickness and weight were measured and discussed the strength reduction according to the water immersion. Tensile strength experimentation was examined on dry condition and water immersion. The result of examination on dry condition was 1.06MPa and on water immersion was 0.67MPa. The results showed 36.8% decreasing rate of tensile strength. Permeability experiment test based on field permeability method of pavement were conducted as a result, permeability coefficients were in the range of 0.67~0.78mm/s that all exceeds object permeability coefficient. Elasticity experiment was based on elasticity test method of Japan road association. GB coefficient was 21% and SB coefficient was 10%. GB coefficient and SB coefficient increased if fine aggregate were increased.

  • PDF