• Title/Summary/Keyword: coefficient approximation

Search Result 223, Processing Time 0.03 seconds

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Fractal Image Compression Using Adaptive Selection of Block Approximation Formula (블록 근사화식의 적응적 선택을 이용한 프랙탈 영상 부호화)

  • Park, Yong-Ki;Park, Chul-Woo;Kim, Doo-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3185-3199
    • /
    • 1997
  • This paper suggests techniques to reduce coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, we choose new approximation coefficients using a non-linear approximation of luminance term. This boosts the fidelity. Our experiment employing the above methods shows enhancement in the coding time more than two times over traditional coding methods and shows improvement in PSNR value by about 1-3dB at the same com- pression rate.

  • PDF

Adaptive Noise Reduction of Speech Using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Lee, Chang-Ki;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • A new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale is proposed. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it can be noticed that SNR and MSE of the proposed algorithm are improved than those of Wavelet transform and than those of Wavelet packet transform.

  • PDF

Change of stochastic properties of MEMS structure in terms of dimensional variations using function approximation moment method (함수 근사 모멘트 기법을 활용한 치수 분포에 따른 MEMS 구조물의 통계적 특성치 변화에 관한 연구)

  • Huh J.S.;Kwak B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.602-606
    • /
    • 2005
  • A systematic procedure of probability analysis for general distributions is developed based on the first four moments estimated from polynomial interpolation of the system response function and the Pearson system. The function approximation is based on a specially selected experimental region for accuracy and the number of function evaluations is taken equal to that of the unknown coefficient for efficiency. For this purpose, three error-minimizing conditions are proposed and corresponding canonical experimental regions are formed for popular probability. This approach is applied to study the stochastic properties of the performance functions of a MEMS structure, which has quite large fabrication errors compared to other structures. Especially, the vibratory micro-gyroscope is studied using the statistical moments and probability density function (PDF) of the performance function to be the difference between resonant frequencies corresponding to sensing and driving mode. The results show that it is very sensitive to the fabrication errors and that the types of PDF of each variable also affect the stochastic properties of the performance function although they have same the mean and variance.

  • PDF

Adaptive Noise Reduction of Speech using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Im Hyung-kyu;Kim Cheol-su
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.271-278
    • /
    • 2005
  • This paper proposed a new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it is demonstrated that the proposed algorithm improves SNR and MSE performance more than Wavelet transform and Wavelet packet transform does.

  • PDF

Long-Term Prediction of Radionuclide Leaching from Waste Matrix by Finite-Slab Approximation Method (유한 격판 근사 방법에 의한 고화체로부터의 방사성 핵종의 용출율 장기 예측)

  • Doh, Jeong-Yeul;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 1988
  • A finite slab approximation method was developed to predict the long-term teachability. It is based on the assumption that the diffusional characteristics of radionuclides in a waste matrix are not dependent on matrix geometry but dependent on volume to surface ratio V/S) and diffusion coefficient. Consequently it can be expressed as the solution of the equations obtained from a finite slab with an equal V/S ratio (imaginary diffusion length). The calculational results by the finite slab approximation method have been compared with the results obtained for finite cylinder and sphere with corresponding diffusional analysis. The results of this simple model have showed a good agreement and presented a general applicability for the long-term prediction of the radionuclide leaching behavior.

  • PDF

An Error Assessment of the Kriging Based Approximation Model Using a Mean Square Error (평균제곱오차를 이용한 크리깅 근사모델의 오차 평가)

  • Ju Byeong-Hyeon;Cho Tae-Min;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.923-930
    • /
    • 2006
  • A Kriging model is a sort of approximation model and used as a deterministic model of a computationally expensive analysis or simulation. Although it has various advantages, it is difficult to assess the accuracy of the approximated model. It is generally known that a mean square error (MSE) obtained from the kriging model can't calculate statistically exact error bounds contrary to a response surface method, and a cross validation is mainly used. But the cross validation also has many uncertainties. Moreover, the cross validation can't be used when a maximum error is required in the given region. For solving this problem, we first proposed a modified mean square error which can consider relative errors. Using the modified mean square error, we developed the strategy of adding a new sample to the place that the MSE has the maximum when the MSE is used for the assessment of the kriging model. Finally, we offer guidelines for the use of the MSE which is obtained from the kriging model. Four test problems show that the proposed strategy is a proper method which can assess the accuracy of the kriging model. Based on the results of four test problems, a convergence coefficient of 0.01 is recommended for an exact function approximation.

A Simulation Study on the Variability Function of the Arrival Process in Queueing Networks (시뮬레이션을 이용한 대기행렬 네트워크 도착과정의 변동성함수에 관한 연구)

  • Kim, Sun-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • In queueing network analysis, arrival processes are usually modeled as renewal processes by matching mean and variance. The renewal approximation simplifies the analysis and provides reasonably good estimate for the performance measures of the queueing systems under moderate conditions. However, high variability in arrival process or in service process requires more sophisticated approximation procedures for the variability parameter of departure/arrival processes. In this paper, we propose an heuristic approach to refine Whitt's variability function with the k-interval squared coefficient of variation also known as the index of dispersion for intervals(IDI). Regression analysis is used to establish an empirical relationships between the IDI of arrival process and the IDI of departure process of a queueing system.

A Transfer Function Synthesis for Model Approximation with Resonance Peak Value (첨두공진점을 갖는 모델 근사화를 위한 전달함수 합성법)

  • Kim, Jong-Gun;Kim, Ju-Sik;Kim, Hong-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • This paper proposes a frequency transfer function synthesis for approximating a high-order model with resonance to a low-order model in the frequency domain. The presented model approximation method is based on minimizing the error function weighted by the numerator polynomial of approximated models, which is used of the RLS(Recursive Least Square) technique to estimate the coefficient vector of approximated models. The proposed method provides better fitting in a low frequency and peak resonance. And an example is given to illustrate feasibilities of the suggested schemes.