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시뮬레이션을 이용한 대기행렬 네트워크 도착과정의 

변동성함수에 관한 연구
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A Simulation Study on the Variability Function of the 

Arrival Process in Queueing Networks

Sunkyo Kim

ABSTRACT

In queueing network analysis, arrival processes are usually modeled as renewal processes by matching mean and 
variance. The renewal approximation simplifies the analysis and provides reasonably good estimate for the performance 
measures of the queueing systems under moderate conditions. However, high variability in arrival process or in 
service process requires more sophisticated approximation procedures for the variability parameter of departure/arrival 
processes. In this paper, we propose an heuristic approach to refine Whitt’s variability function with the -interval 
squared coefficient of variation also known as the index of dispersion for intervals(IDI). Regression analysis is used 
to establish an empirical relationships between the IDI of arrival process and the IDI of departure process of a 
queueing system.

Key words : Queueing networks, Decomposition approximation, Index of dispersions for intervals(IDI), Variability 
function, Regression analysis

요   약

본 연구에서는 대기행렬네트워크 성과측정 방법 중의 한 가지로서 널리 이용되는 분해법의 구성요소로 제안된 변동성 함수

의 이론적 근거를 살펴보고 성과척도 측정의 정확도 제고를 위하여 회귀분석을 통한 변동성 함수의 모수추정 개선방안을 제안

하고자 한다. 이를 위하여 변동성이 높은 도착과정과 서비스 과정이 포함된 직렬 대기행렬 네트워크에서의 이탈과정의 자동 

상관계수 함수를 추정하여 분해법에 사용할 수 있는 방안을 알아본다.

주요어 : 대기행렬 네트워크, 분해법, 변동성 함수
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1. Introduction

The decomposition approach is a reasonable alternative 
to simulation when the analysis of a queueing network 
is not tractable by analytic method. The simplicity of 

the method is due to the two-moment approximation of 
the arrival and departure processes; for details of the 
decomposition method see Buzacott and Shanthikumar 
(1993), Kuehn(1979), Shanthikumar and Buzacott(1981), 
and Whitt(1983). The squared coefficient of variation 
(SCV) of inter-arrival times is approximated by either 
the stationary interval(SI) method or the asymptotic 
(ASY) method. The SI method completely ignores the 
autocorrelation in inter-arrival times whereas the ASY 
method accounts for infinitely many lags of autocorre-
lation; Albin(1984) and Whitt(1981, 1982). Then the 
SCV of inter-arrival times is used to approximate the 
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performance measures such as average waiting time and 
average queue length. However, using SCV as a single 
measure of the variability of a non-renewal process 
may result in significant error in the approximation of 
performance measure. It is shown that the two-moment 
parametrization that does not account for the autocorrelation 
is subject to a serious under-approximation of waiting 
time especially at a bottleneck station in a network with 
highly variable arrival process or highly variable service 
process; Fendick, Saksena, and Whitt(1989, 1991), Jageman 
et. al.(2004), Kim(2004), Livny et. al.(1993), and Suresh 
and Whitt (1981). Motivated by this phenomenon Whitt 
(1995) proposed the variability function that parameterizes 
the variability of a non-renewal process not as a constant 
but as a function of given traffic intensity. Unlike the 
SI or the ASY approximation of SCV of a non-renewal 
process, the variability function takes on different values 
and results in better approximation of queueing performances. 
The decomposition approximation of queueing networks 
has been refined in many different ways to overcome 
the limitation of two-moment renewal approximation of 
arrival processes; Bitran and Tirupati(1988), Kim(2000, 
2004, 2005), and Whitt(1994, 1995). Recent studies include 
Markov Modulated Poisson Process(MMPP) approximation 
of arrival processes to account for the dependence in 
arrival processes; Heindl(2001).

This paper proposes a method to refine the variability 
function with an ad hoc approach to approximate the 
index of dispersion for intervals(IDI) sequence, i.e. - 
interval SCV discussed in Fendick et al.(1989, 1991), 
Sriram and Whitt(1986), and Whitt(1995). Two different 
cases of tandem networks considered in Suresh and Whitt 
(1990a, 1990b) are used for the regression analysis of 
the variability function queueing formula.

The organization of the paper is as follows. In section 
2, a brief review of the decomposition approximation 
and the variability function is given. Model description 
and simulation results are given in section 3. An appro-
ximation formula for the IDI sequence is given in section 
4. Section 5 concludes with the discussion of the implication 
of our result and future direction of research.

2. Decomposition Approximation and 

the Variability Function

In this section, we briefly review the decomposition 
methodology with a focus on the queueing operation and 
the variability function. The decomposition approximation 
represents the queueing network as a system of linear 
equations in terms of the SCV parameter of the arrival 
process to each station. The system of equations is obtained 
by three network operations; queueing, splitting, and 
superposition. Each of these three operations describes 
the approximate linear relationship among SCVs of 
intervals of point processes associated with each station; 
see Whitt(1994) for details. Notations used in this paper 
are summarized below. For station ,

: the effective arrival rate
: the traffic intensity


 : the SCV parameter of inter-arrival times


 : the SCV parameter of inter-departure times 


 : the SCV of service times

In the decomposition approximation of queueing 
networks, the relationship between 

 and 
 at a given 

station is approximated by a queueing operation. The 
splitting operation describes the relationship between 
departure process from a station and its split processes. 
The superposition operation approximates the SCV of 
aggregated arrival processes to a station. These three 
network operations are based on simplifying assumption 
that each point process is a renewal process. The variability 
of each point process is represented by a single parameter. 
The dependence in inter-arrival times is either completely 
ignored by the SI approximation or fully accounted for 
by the ASY approximation; Albin(1984) and Whitt(1981, 
1982). This dependence is sometimes critical in queueing 
performance analysis; Fendick et al.(1989, 1991), and 
Sriram and Whitt(1986). Moreover, its effect is dependent 
on traffic intensity at a station; that is, traffic intensity 
determines the range of relevant lag of autocorrelations. 
We are interested in parametrization of the dependence 
in inter-departure times within the queueing operation. 
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As an approximation of the SCV of inter-departure time, 
Whitt(1982) proposed


  


 


                         (1)

based on the SI approximation and


  

                                      (2)

by the ASY approximation. The SI queueing formula 
is typically chosen over the ASY queueing formula 
since the latter is appropriate only under heavy traffic 
and that the SI formula gets close to (2) as the traffic 
intensity goes to 0. Since the SI method ignores all the 
autocorrelation, however, the effect of autocorrelation in 
inter-arrival times is not reflected in the approximation 
of waiting time in queue. That is the reason why the 
IDI is needed in some situations for better estimation 
of the queueing performance. Refinements in this regard 
have been proposed with some modifications of the 
weights given to 

 and 
 in (1). Suresh and Whitt(1990a) 

used traffic intensities of current and next stations based 
on observations of two stations in tandem. Whitt(1995) 
proposed the following the variability function for 
general open queueing networks:


  

 
 

where

  


             

and  is the traffic intensity of the station of interest 
(i.e., the bottleneck station). With this variability function, 
the system of equations is solved as many times as 
the number of distinct traffic intensities of interest. In 
order to approximate  , the system of equations 

is solved for 
   with   ; see Whitt(1983, 1995). 

Then, 
   is used as the SCV parameter for the 

arrival process to station  in the following approximation 
formula:

 



 

 
                        (3)

In Whitt’s variability function,  plays the role of 
choosing the level of autocorrelation among inter-arrival 
times by controlling the weights given to 

 and 
  . 

In this paper we propose an approach to fill the gap 
between the SI and the ASY queueing formula. Simple 
tandem queueing networks considered in Suresh and 
Whitt(1990b) and Whitt(1995) are used to illustrate two 
different structures of autocorrelations in inter-departure 
times. By regression analysis, a variability function for 
queueing formula is obtained that incorporates these 
two different cases. Since the proposed formula is given 
in terms of the IDI sequence, it can be considered as 
an IDI approximation formula for departure processes 
in queueing networks. That is, the autocorrelation among 
successive inter-departure times at each station is appro-
ximated and characterized by the IDI sequence,  . 
This sequence measures the cumulative autocorrelation 
among inter-departure times. Let   ⋯ be 
the sum of  consecutive intervals. Then the -interval 
SCV is defined, for ≥ , as follows:

≡




  








where  is the lag-j autocorrelation of intervals. As two 

special cases,   and ∞  correspond to SI and ASY 
method, respectively. In the next section, we discuss a 
heuristic approach to refine the variability function.

3. Model Description and 

Simulation Results

In this section, we explore the IDI sequence of inter- 
arrival times in tandem queues. As in Suresh and Whitt 
(1990b) and Whitt(1995) two extreme cases of 10-station 
tandem networks are simulated to generate the IDI 
sequence for each station. The external arrival process 
is a renewal process with arrival rate 1. At each station, 
customers are served according to the FIFO discipline 
by a single server with i.i.d. service times. The queue 
capacity is assumed to be infinite. Tandem queueing 
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Table 1. 
   of interarrival times from simulation 

(Case A-1)

　 　
j 1 10 50 100 200 300 400 500

1 8 8.02 8.02 8 8.11 7.93 8 8.06

2 6.03 6.53 7.28 7.54 7.86 7.77 7.95 7.93

3 5.05 5.77 6.84 7.27 7.71 7.67 7.89 7.83

4 4.4 5.25 6.52 7.06 7.59 7.6 7.84 7.77

5 3.93 4.84 6.25 6.89 7.47 7.53 7.79 7.71

6 3.56 4.53 6.02 6.73 7.37 7.47 7.73 7.67

7 3.27 4.25 5.82 6.59 7.28 7.4 7.68 7.63

8 3.02 4.02 5.65 6.47 7.2 7.35 7.63 7.59

9 2.82 3.82 5.48 6.35 7.12 7.3 7.58 7.56

10 2.64 3.64 5.33 6.23 7.04 7.25 7.53 7.51

Fig. 1. 
   for stations j = 1,...,10(Case A-1)

networks are perfect models for the development and 
test of the queueing formula since no splitting or super-
position is involved. In the first case, a highly variable 
renewal arrival is transformed into a non-renewal process 
with large variation in the IDI sequence. In the second 
case, a highly variable service process transforms a Poisson 
arrival process into a non-renewal process with large 
variation in the IDI sequence. This large variation in 
the IDI sequence complicates the problem of identifying 
the appropriate inter-arrival SCV parameter to be used 
in the approximation of waiting time, especially at a 
bottleneck station. The purpose of this experiment is to 
propose an approach to approximate the IDI sequence. 
This is a basis for further refinement of queueing formulas 
and the decomposition method.

In case A, we consider two subcases for external arrival 
variability: 

   in case A-1 and 
   in case A-2. 

The i.i.d. inter-arrival times follow hyperexponential 
distribution with balanced means. That is, a random 
variable with    is generated as a combination of two 
exponential random variables each with mean 1/0.12 
and 1/1.88, and with weights 0.06 and 0.94 respectively; 
see Whitt(1982) for details. Service times are exponentially 
distributed at all stations, i.e., 

     . As for 
the traffic intensities,  ⋯   and   .

In case B, we consider two subcases for service 
variability at station 1, i.e. 

   in case B-1 and 
   

in case B-2. The external arrival process is Poisson with 
arrival rate of 1. High variability is created at the first 
station by i.i.d. service times with hyperexponential 
distribution with balanced means. With the traffic intensity 
   the effect of service variability is passed on to 
the subsequent stations. For stations 2 to 9, the service 
times are i.i.d. exponential with mean 0.6. The last 
station is a bottleneck with traffic intensity 0.9 and its 
service times are i.i.d. exponential with mean 0.9.

In order to develop a regression approximation of the 
IDI sequence, 

 ’s are obtained from simulation of 
10 replications of 500,000 inter-arrival times, of which 
first 20,000 observations are truncated.

The IDI sequence for case A-1 is summarized in 
Table 1 and the graph is shown in Figure 1. Simulation 

results of case A-1 and A-2 can be summarized as 
follows:

i) 
    ≥ .

ii) 
   is decreasing with respect to j.

iii) For stations 2 to 10, 
   increases to the ASY 

SCV 
 ∞  = 8 as  goes to ∞.

iv) For station 10, 
   ranges from 2.5 to 8 for 

case A-1 and from 1.5 to 4 for case A-2.

The last observation is an explanation for the heavy 
traffic bottleneck phenomenon discussed in Suresh and 
Whitt(1990). That is, the average waiting time approximation 
based on the SI method could be significantly lower than 
the ASY method. With the approximation of the whole 
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Table 2. 
   of interarrival times from simulation

(Case B-1)

　 　
j 1 10 50 100 200 300 400 500

1 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

2 6.66 6.6 6.21 5.78 5.18 4.67 4.4 4.11

3 5.02 5.4 5.71 5.56 5.13 4.66 4.4 4.14

4 4.23 4.81 5.43 5.42 5.09 4.65 4.39 4.15

5 3.71 4.4 5.21 5.3 5.04 4.63 4.37 4.15

6 3.33 4.08 5.02 5.19 4.99 4.62 4.35 4.14

7 3.04 3.82 4.86 5.09 4.96 4.6 4.35 4.14

8 2.79 3.6 4.71 5.01 4.92 4.59 4.33 4.15

9 2.59 3.41 4.58 4.93 4.89 4.56 4.32 4.15

10 2.43 3.25 4.45 4.84 4.86 4.54 4.31 4.15

Fig. 2. 
   for stations j =1,...,10(Case B-1)

sequence of 
  , further improvement can be made 

on the average waiting time approximation.
The IDI sequence for case B-1 is summarized in 

Table 2. For case B-1, they are also depicted in Figure 
2. The following summarizes the simulation for case B:

i) 
    ≥ , since the arrival process is Poisson.

ii) 
   is decreasing along the stations from j = 2 

to 10.
iii) For station 2, 

   is decreasing function of k.

iv) For stations 3 to 10, 
 ’s are increasing and 

then decreasing. 
v) For all stations 

   approaches the ASY SCV 


 ∞  = 1 as  goes to ∞. (Simulation shows 

that 
   is about 1.60 for  =2,...,10.)

The following observations can be made from 
simulation experiments:

i) For both cases, 
  , approaches 1 along the 

stations  =1,..., 10. This is due to exponential 
service times at all stations in Case A and at all 
stations except for the first station in Case B.

ii) For both cases, 
   approaches the external 

ASY arrival variability 
 ∞  as k goes to ∞ 

for all stations. 
iii) 

   is monotonically increasing with respect 
to ≥  in Case A whereas it is unimodal, 
increasing and then decreasing, in Case B.

In the next section, we propose an approach to 
approximate the IDI sequence.

4. Regression Approximation of the 

Variability Function

4.1 Approximation of the IDI by Regression
In this section, an approximation formula is provided 

for 
 . First, it is assumed that the 

  is a convex 

combination of 
  and 

 for all k ≥1. By this 

assumption, if 
  

 for some k, then 
  

 . 
This assumption holds true if there is no dependence 
between arrival process and service process. Thus, this 
assumption does not hold under immediate feedback; 
see Kim(2000) for details. 

We propose a formula for the whole sequence of 

  given 

 , 
, and ρ. We consider the IDI 

sequence of the following form which can be justified 
by the simulation result:


  

 


which can be written as

  



 


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Table 3. Regression approximation of g(k)

Model 1 Model 2 

A-1
g(k) = 2 + 1.182 ln k g(k) = 2.96 + 0.999 ln k 

(R2 = 0.965)*   (R2 = 0.808) 

A-2 
g(k) = 2 + 1.234 ln k g(k) = 2.516 + 1.135 ln k 

(R2 = 0.975)    (R2 = 0.863) 

B-1 
g(k) = 2 + 1.275 ln k g(k) = 2.288 + 1.217 ln k

(R2 = 0.915) (R2 = 0.660) 

B-2 
g(k) = 2 + 1.363 ln k g(k) = 1.732 + 1.416 ln k 

(R2 = 0.923)    (R2 = 0.727) 

*R2 is the coefficient of determination.Fig. 3. g(k) of inter-arrival times(Case A-1)

Fig. 4. g(k) of inter-arrival times(Case B-1)

Regression data collected from simulation not satisfying 
the above assumption has been omitted in regression 
analysis. That is, there are few observations such that 

  

 
 . Based on the values of g(k) 

collected from simulations of both cases A and B, a 
logarithmic function g(k) = a + b ln k is chosen for 
the simple regression analysis; see Figures. 3 and 4. 
Two regression models are considered below, with and 
without the restriction on the constant . In the first 
model, we set a = 2 to make the model consistent 
with the SI queueing formula (1), that is, 

  

 



  for k = 1, where g(1) = 2. The second model 

has no restriction on a.
Based on the IDI sequences collected from the 

simulation of 10-station tandem networks of cases A 
and B, estimates of g(k)’s are given in table 3.

For the first model with the constraint  , both 
cases show regression coefficient  ranging from 1.18 

to 1.36. The second model shows constant  between 
1.7 and 3 and coefficient  between 1 and 1.4. So, we 
may choose g(k) = 2 + 1.2 ln k for use with the 
variability function. 

For validation of our formula, a two-station tandem 
queue is used with the same parameter values as in 
Heindl(2001). Two different arrival processes are chosen 
for the test queues. One is the interrupted Poisson process 
(IPP) as a special case of MMPP with parameters r0 = 
0.9, r1 = 0.1, λ0 = 5, and λ1 = 0 following the standard 
notations used in the literature; see Heindl(2001) for 
details. The mean and the SCV of the inter-arrival times 
is 2 and 10 respectively. The other arrival process is 
the balanced-mean hyperexponential(H2) inter-arrival 
times with the same first two moments as the IPP, i.e. 
combination of two exponential distributions one with 
mean of 1.05 with probability 1/1.05 and the other with 
mean of 20.95 with probability 1/20.95. In fact, it can be 
shown that the above IPP is equivalent to a hyperex-
ponential inter-arrival times with non-balanced mean, 
i.e. one with mean of 11.832 with probability 0.157 and 
the other with mean of 0.169 with probability 0.843. 
The service time is uniform(0, 2) distribution at the first 
station and deterministic with mean 1 at the second 
station. In order to test the performance of our formula, 
the IDI sequences estimated from simulation are given 
in Table 4 along with the average waiting time. 

In table 5, the approximated IDI sequences are given 
based on g(k) = 2 + 1.2 ln k for both IPP an H2 
interarrival times. The result shows good performance 
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Table 4. Estimated IDI and E(W) for tandem queues

Hyperexponential with 
balanced mean IPP

k 
  

  
  

  
  

 

1 10.18* 8.85 8.38 10.01 5.68 5.13 

10 10.09 9.25 8.96 9.93 6.78 6.44 

50 9.97 9.64 9.53 9.83 8.42 8.24 

100 9.68 9.48 9.42 9.74 9.07 8.96 

200 9.91 9.80 9.80 10.44 10.20 10.13 

300 10.22 10.08 10.04 10.31 9.93 9.88 

400 9.84 9.83 9.85 9.60 9.49 9.45 

500 8.69 8.64 8.64 10.39 10.04 9.96 

1000 9.60 9.45 9.44 9.51 9.37 9.34 

E(W) 2.90 0.98 -　 8.92 1.39 　-

*Based on 120,000 observations of inter-arrival times

Table 5. Approximation of 
   with g(k) = 2 + 1.2 ln k

Hyperexponential with 
balanced mean IPP

 
  

  
  

 

1 7.72 5.79 7.59 5.69 

(-0.13)* (-0.31) (0.34) (0.11) 

10 9.73 9.37 9.58 9.22 

(0.05) (0.05) (0.41) (0.43) 

50 9.88 9.78 9.74 9.64 

(0.02) (0.03) (0.16) (0.17) 

100 9.63 9.58 9.69 9.64 

(0.02) (0.02) (0.07) (0.08) 

200 9.88 9.85 10.41 10.38 

(0.01) (0.01) (0.02) (0.02) 

300 10.20 10.18 10.29 10.27 

(0.01) (0.01) (0.04) (0.04) 

400 9.82 9.81 9.58 9.57 

(0.00) (0.00) (0.01) (0.01) 

500 8.68 8.67 10.38 10.36 

(0.00) (0.00) (0.03) (0.04) 

1000 9.59 9.58 9.50 9.50 

(0.02) (0.02) (0.01) (0.02) 

*Number in ( ) is relative error.

for H2 inter-arrival times except for k = 1. On the other 
hand the result is not as good in IPP arrival process.

It is worthwhile to note that the average waiting 
time under IPP is significantly greater than the case 
of H2 inter-arrival times even though the two arrival 
processes have the mean and variance of inter-arrival 
times, that is, λ = 5 and SCV =10. One key difference 
is that the non-centered third moment of the IPP is 
1,560 whereas that of H2 is 2,640. This result is consistent 
with the claim in Wolff(2003) that average waiting time 
decreases with the increase of the third moment of inter- 
arrival times. The result partially validates our formula but 
also presents the limitation of two-moment decomposition 
method. Another interesting result can be found in the 
second queue where the average waiting time is larger 
for the IPP arrival case even with smaller second moment. 
In fact, the 

   under IPP is shown to be less than 


   under H2 for almost all k.

4.2 The Correspondence between 
 and 

traffic intensity
This section briefly discusses the issue of using the 

IDI sequence for the approximation of average waiting 
time in queue especially with the bottleneck station in 
cases A-1 and B-1 described above. In order to use the 
approximate sequence 

   for the approximation of 
 ,  needs to be chosen. Whitt (1981) proposed

 


∞

                            (4)

where  depends on 
∞  and ρ but not on 

. Our 

result shows that the correspondence between 
   and 

  is not quite consistent with (4). By simulation 
estimate of   together with (3) the imputed SCV, 


 , can be determined as follows:



  




 


  

Then, the imputed SCV and the IDI sequence 
   

obtained from simulation can be compared with each 
other to determine the relevant lag   given 

 and .  
Table 6 shows the value of   for bottleneck station 
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Table 6. Correspondence between IDI and ρ10

Case ρ10 0.7 0.8 0.9 0.95

A-1

E(W10)
3.05 8.35 28.3 69.01

(0.06)* (0.23) (1.66) (6.23)




 2.74 4.22 5.99 6.65

k(ρ10) 31 80 360 1520
 5 20 100 200

B-1

E(W10)
2.83 6.85 19.71 40.83




 (0.21) (0.88) (2.05)




 2.47 3.28 3.87 3.52

k(ρ10) 4 10 45 190
 1 10 20 700

*The number in ( ) is 90% confidence half width.

under  = 0.7, 0.8, 0.9 and 0.95 for cases A-1 and 

B-1. Recall that 
 ∞   for case A-1 and that 


 ∞   for case B-1. For case A-1, the imputed 

SCV increases monotonically with respect to . Since 


  , ≥ , is also monotonically increasing, one- 

to-one mapping is possible between  and ; see 
Figure 1. For each  = 0.7, 0.8, 0.9 and 0.95,   

is significantly larger than  . This implies that waiting 
time can be overapproximated by (4). In case B-1, on 
the other hand, the imputed SCV increases and then 
decreases with respect . This is consistent with 


  , ≥ , obtained from the simulation; see Figure 

2. This unimodality complicates the correspondence 
between the relevant value of k and the traffic intensity. 
As for ρ10 = 0.95,   could possibly be as large as 700 
whereas Whitt’s formula gives k(ρ10) = 190.

As pointed out in previous section, the third moment 
can also make a significant difference in average waiting 
time even under the same first two moments. Therefore, 
trying to establish the correspondence between autocor-
relation and traffic intensity would be meaningless under 
such situations as both in the first and second queue of 
our test model.  

5. Discussions and conclusions

The IDI sequence,  , is a measure of cumulative 
autocorrelation among inter-arrival times. It has been 
proposed as a variability measure for arrival processes 
to be used in the approximation of waiting time in queue. 
However, simulation is the only way to obtain the IDI 
sequence of inter-departure times for a queueing network 
with non-renewal arrival processes and general service 
times. In this paper we propose an approximation method 
for the IDI sequence of inter-departure times in queueing 
networks. Our approach is based on regression analysis 
of the IDI data obtained from simulation of 10-station 
tandem networks. Two extreme cases, one with highly 
variable arrival process and the other with highly variable 
service times, are considered and are shown to have 
similar regression estimates of the parameters of the 
variability function that can be used in queueing operation 
of the decomposition approximation of general open 
queueing networks. By comparing the IDI sequence and 
the average waiting time under various traffic intensities 
at the bottleneck station, the range of relevant lag of 
autocorrelations of inter-arrival times can be determined 
as a function of the traffic intensity and other parameters 
of the system. A test model shows the validity of our 
proposed variability function but also presents a potential 
limitation of two-moment approximation with an example 
of queue where the third moment determines the average 
waiting time.

In order to apply our result to general open queueing 
networks, however, other factors should be taken into 
consideration such as lag- correlation between split 
processes. Also Bitran and Tirupati’s(1988) and Whitt’s 
refinement(1994) of decomposition method for deterministic 
routing can be combined with our result as in Kim(2005). 
Another direction of future research is the validation of 
(4) proposed by Whitt(1995). It is well known that the 
SI SCV 

  is appropriate for estimating   under 

moderate traffic intensity and that the ASY SCV 
∞  

should be used under heavy traffic. We leave the problem 
of identifying this correspondence for future research. 
Moreover, the characterization of the autocorrelation 
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structure of departure process from a queue with specific 
service times and Markovian arrival processes can be 
used for further refinement of decomposition method; 
Shioda(2003) and Yeh, and Chang(2000). Further impro-
vement also requires taking into account of the third 
moment of inter-arrival times which is shown to be a 
critical factor under some situations when the arrival is 
highly variable.
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