• Title/Summary/Keyword: codes over rings

Search Result 40, Processing Time 0.018 seconds

ON LCD CODES OVER FINITE CHAIN RINGS

  • Durgun, Yilmaz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Linear complementary dual (LCD) codes are linear codes that intersect with their dual trivially. LCD cyclic codes have been known as reversible cyclic codes that had applications in data storage. Due to a newly discovered application in cryptography, interest in LCD codes has increased again. Although LCD codes over finite fields have been extensively studied so far, little work has been done on LCD codes over chain rings. In this paper, we are interested in structure of LCD codes over chain rings. We show that LCD codes over chain rings are free codes. We provide some necessary and sufficient conditions for an LCD code C over finite chain rings in terms of projections of linear codes. We also showed the existence of asymptotically good LCD codes over finite chain rings.

THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.537-544
    • /
    • 2018
  • There is a standard construction of lifting cyclic codes over the prime finite field ${\mathbb{Z}}_p$ to the rings ${\mathbb{Z}}_{p^e}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields ${\mathbb{F}}_{p^r}$ to codes over Galois rings GR($p^e$, r). We give concrete examples with all of the lifts.

QUADRATIC RESIDUE CODES OVER GALOIS RINGS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.567-572
    • /
    • 2016
  • Quadratic residue codes are cyclic codes of prime length n defined over a finite field ${\mathbb{F}}_{p^e}$, where $p^e$ is a quadratic residue mod n. They comprise a very important family of codes. In this article we introduce the generalization of quadratic residue codes defined over Galois rings using the Galois theory.

BASIC CODES OVER POLYNOMIAL RINGS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • We study codes over the polynomial ring $\mathbb{F}_q[D]$ and introduce the notion of basic codes which play a fundamental role in the theory.

  • PDF

CODES OVER POLYNOMIAL RINGS AND THEIR PROJECTIONS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.385-397
    • /
    • 2009
  • We study codes over the polynomial ring ${\mathbb{F}}_q[D]$ and their projections to the finite rings ${\mathbb{F}}_q[D]/(D^m)$ and the weight enumerators of self-dual codes over these rings. We also give the formula for the number of codewords of minimum weight in the projections.

  • PDF

GLIFT CODES OVER CHAIN RING AND NON-CHAIN RING Re,s

  • Elif Segah, Oztas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1557-1565
    • /
    • 2022
  • In this paper, Glift codes, generalized lifted polynomials, matrices are introduced. The advantage of Glift code is "distance preserving" over the ring R. Then optimal codes can be obtained over the rings by using Glift codes and lifted polynomials. Zero divisors are classified to satisfy "distance preserving" for codes over non-chain rings. Moreover, Glift codes apply on MDS codes and MDS codes are obtained over the ring 𝓡 and the non-chain ring 𝓡e,s.

CYCLIC CODES OVER THE RING OF 4-ADIC INTEGERS OF LENGTHS 15, 17 AND 19

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.767-777
    • /
    • 2019
  • We present a new way of obtaining the complete factorization of $X^n-1$ for n = 15, 17, 19 over the 4-adic ring ${\mathcal{O}}_4[X]$ of integers and thus over the Galois rings $GR(2^e,2)$. As a result, we determine all cyclic codes of lengths 15, 17 and 19 over those rings. This extends our previous work on such cyclic codes of odd lengths less than 15.