References
- A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr. 6 (1995), no. 1, 21-35. https://doi.org/10.1007/BF01390768
- C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun. 10 (2016), no. 1, 131-150. https://doi.org/10.3934/amc.2016.10.131
-
C. Carlet, S. Mesnager, C. M. Tang, Y. F. Qi, and R. Pellikaan, Linear codes over
$F_q$ are equivalent to LCD codes for q > 3, IEEE Trans. Inform. Theory 64 (2018), no. 4, part 2, 3010-3017. https://doi.org/10.1109/TIT.2018.2789347 - S. T. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok, and P. Sole, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory 4 (2017), no. 2-3, 116-128. https://doi.org/10.1504/IJICOT.2017.083827
- M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), no. 3, 375-386. https://doi.org/10.1016/j.ffa.2009.01.002
- Y. Fan, S. Ling, and H. Liu, Matrix product codes over finite commutative Frobenius rings, Des. Codes Cryptogr. 71 (2014), no. 2, 201-227. https://doi.org/10.1007/s10623-012-9726-y
- C. Guneri, B. Ozkaya, and P. Sole, Quasi-cyclic complementary dual codes, Finite Fields Appl. 42 (2016), 67-80. https://doi.org/10.1016/j.ffa.2016.07.005
- M. Hazewinkel, Handbook of Algebra. Vol. 5, Handbook of Algebra, 5, Elsevier/North-Holland, Amsterdam, 2008.
- T. Honold and I. Landjev, Linear codes over finite chain rings, Electron. J. Combin. 7 (2000), Research Paper 11, 22 pp.
- L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inform. Theory 63 (2017), no. 5, 2843-2847. https://doi.org/10.1109/TIT.2016.2644660
- C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr. 86 (2018), no. 10, 2261-2278. https://doi.org/10.1007/s10623-017-0447-0
- X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl. 34 (2015), 1-19. https://doi.org/10.1016/j.ffa.2015.01.004
- J. L. Massey, Reversible codes, Information and Control 7 (1964), 369-380. https://doi.org/10.1016/S0019-9958(64)90438-3
- J. L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342. https://doi.org/10.1016/0012-365X(92)90563-U
- B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
- S. Mesnager, C. Tang, and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory 64 (2018), no. 4, part 1, 2390-2397. https://doi.org/10.1109/TIT.2017.2766075
- G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067. https://doi.org/10.1109/18.841186
- G. H. Norton, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506. https://doi.org/10.1007/PL00012382
- N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), no. 1-3, 345-347. https://doi.org/10.1016/j.disc.2004.05.005
- L. Sok, M. Shi, and P. Sole, Constructions of optimal LCD codes over large finite fields, Finite Fields Appl. 50 (2018), 138-153. https://doi.org/10.1016/j.ffa.2017.11.007
- J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575. https://doi.org/10.1353/ajm.1999.0024
- X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994), no. 1-3, 391-393. https://doi.org/10.1016/0012-365X(94)90283-6
- H. Zhu and M. Shi, On linear complementary dual four circulant codes, Bull. Aust. Math. Soc. 98 (2018), no. 1, 159-166. https://doi.org/10.1017/S0004972718000175