• Title/Summary/Keyword: coded driving system

Search Result 6, Processing Time 0.02 seconds

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

Design and Implementation of Vehicle Internal Alarm System using Raspberry-pie Multi-sensor

  • Choi, MyeongBok;Park, SungKon
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • This paper describes the design and implementation of a vehicle internal alarm system using raspberry-pie and gas sensor. It provides a notification system for sleepiness during driving, a driving time notification system and a smoking detection system. We coded using 'Python'. And we use 'MySQL' and 'PHP' to build the necessary servers and web pages for gathering sensing data and monitoring. The developed system was tested by several methods. All experiments showed satisfactory response signals and detected with immediate responses.

Development and Performance of Automated Calibration System of Sound Level Meters (소음계 교정 자동화 시스템 개발 및 성능평가)

  • 김용태;조문재;이용봉;서재갑
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.879-886
    • /
    • 1998
  • An automated calibration system of sound level meters was developed and tested. As a standard sound source, the speaker unit(Forstex FE208) cabineted by 440$\times$390$\times$490 $\textrm{mm}^3$(LHW) volume wood box was adopted. Including this source, the driving part was found out to have a good linearity of sound pressure output vs AC voltage input. The Hybrid-Bisect/Newton-Raphson method modified by the linearity was adopted as a searching algorithm. Uisng GPIB interface, the console PC make the control, measurements, and calculations and finally make the accumulation of useful data and results automatically by the instructon in the program coded by C languate. Several trials of automatic calibration using this developed system give the reliable results.

  • PDF

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF

2-D/3-D Combined Algorithm for Automatic Solder Paste Inspection (솔더 페이스트 자동검사를 위한 2-D/3-D 복합 알고리즘)

  • 조상현;이상윤;임쌍근;최흥문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • In this paper, we present the combined 2-D and 3-D algorithms for automatic solder paste inspection. For automatic inspection, optical system for the combined inspection and driving unit is made. One-pass run length algorithm that has fast and efficient memory space is applied to the input image fur extracting solder paste patterns. The path of probe movement is then calculated for an automatic inspection. For a fast 3-D inspection, the phase shift algorithm based on Moire interferometry is also used. In addition, algorithms used in this paper are coded by $MMX^{TM}$. A probe system is manufactured to simultaneously inspect 2-D and 3-D for 10mm$\times$10mm field of view, with resolutions of 10 $\mu\textrm{m}$for both x, y axis and 17 $\mu\textrm{m}$for z axis, and then, experiments on several PCBs are conducted. The processing times of 2-D and 3-D, excluding an image capturing, is 0.039 sec and 0.047 sec, respectively. The credible result with $\pm$ 1$\mu\textrm{m}$uncertainty can be also achieved.

  • PDF