Constitutive equations in a nuclear reactor safety analysis code are mostly empirical correlations developed from experiments, which always accompany uncertainties. The accuracy of the code can be improved by modifying the constitutive equations fitting wider range of data with less uncertainty. Thus, the sensitivity of the code with respect to the constitutive equations is evaluated quantitatively in the paper to understand the room for improvement of the code. A new methodology is proposed which first starts by dividing the thermal hydraulic conditions into multiple sub-regimes using self-organizing map (SOM) clustering method. The sensitivity analysis is then conducted by multiplying an arbitrary set of coefficients to the constitutive equations for each sub-divided thermal-hydraulic regime with SOM to observe how the code accuracy varies. The randomly chosen multiplier coefficient represents the uncertainty of the constitutive equations. Furthermore, the set with the smallest error with the selected experimental data can be obtained and can provide insight which direction should the constitutive equations be modified to improve the code accuracy. The newly proposed method is applied to a steady-state experiment and a transient experiment to illustrate how the method can provide insight to the code developer.
Kim, Hyoung-Jin;Kim, Chongam;Rho, Oh-Hyun;Lee, Ki Dong
Journal of the Korean Society for Industrial and Applied Mathematics
/
제3권2호
/
pp.161-171
/
1999
Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct differentiation method and an adjoint method respectively from discrete two-dimensional compressible Navier-Stokes equations. Unlike previous other researches, Baldwin-Lomax algebraic turbulence model is also differentiated by hand to obtain design sensitivities with respect to design variables of interest in turbulent flows. Discrete direct sensitivity equations and adjoint equations are efficiently solved by the same time integration scheme adopted in the flow solver routine. The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time by allowing the large banded flux jacobian matrix unassembled. Direct sensitivity code results are found to be exactly coincident with sensitivity derivatives obtained by the finite difference. Adjoint code results of a turbulent flow case show slight deviations from the exact results due to the limitation of the algebraic turbulence model in implementing the adjoint formulation. However, current adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior researches.
The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.
The present study is to investigate the possibility of overestimation or underestimation when the ACI Code equations are used to evaluate the unbonded tendon stress. An experimental program was planned with 6 beams which divided into two groups. Each group consisted of 3 beams to check the possibility of overestimation or underestimation of unbonded tendon stress. The experimental results were also compared with various design equations including the one proposed by Moon and Lim. It was proven that the ACI Code equations may overestimate or underestimate the unbonded tendon stress in certain cases.
This paper describes the numerical solution to the hyperbolic system of magnetohydrodynamic (MHD) equations. First, by pointing out the approximations involved, the deal MHD equations are presented. Next, the MHD waves as well as the associated shocks and discontinuities, are presented. Then, based on the hyperbolicity of the ideal MHD equations, the application of upwind schemes, which have been developed for hydrodynamics, is discussed to solve the equations numerically. As an definite example, one and multi-dimensional codes based on the Total Variation Diminishing scheme are presented. The treatment in the multi-dimensional code, which maintains ${\nabla}{\cdot}$B = 0, is described. Through tests, the robustness of the upwind schemes for MHDs is demonstrated.
The closed form solution of the equilibrium equations in the ultimate design of reinforced concrete sections under biaxial bending is presented. The stresses in the materials are described by the Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions. The procedure is convenient for the use of mathematical manipulation programs and the results are easily included into nonlinear analysis codes. The equations developed for rectangular sections can be applied for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of the developed model for rectangular sections and composed sections are included.
Significant changes have been made to estimate the punching shear capacity for edge column-slab joints in the latest editions of most current codes. The revised equations account for axial forces as well as moments conveyed to columns from slabs, which have a substantial impact on the punching resistance of such joints. Many key design parameters, such as reinforcement-ratio, concrete strength, size-effect, and critical-section perimeter, were treated differently or even ignored in various code provisions. Consequently, wide ranges of predicted punching shear strength were detected by applying different code formulas. Therefore, it is essential to assess the various current Codes' design-equations. Because of the similarity in estimated outcomes, only the ACI, EC, and SNiP are used in this study to cover a wide range of estimation ranges from highly conservative to unconservative. This paper is devoted to analyzing the techniques in these code provisions, comparing the estimated punching resistance with available experimental data, and finally developing efficient models predicting the punching capacity of edge column-slab connections. 63 samples from past investigations were chosen for validation. To appropriately predict the punching shear, newly updated equations for ACI and SNiP are provided based on nonlinear regression analysis. The proposed equations'results match the experimental data quite well.
Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.
The non-conservative form of momentum equations is often used for some two-phase flow codes instead of a conservative form because of numerical convenience. Another non-conservative form, so called, a semi-conservative form can improve the numerical solution of these codes maintaining the numerical convenience. It is close to the conservative form but still maintains the feature of the non-conservative form. A semi-conservative form of the momentum equations and a non-conservative form of the momentum equations are implemented in CUPID[1] code. The numerical results of the semi-conservative and the non-conservative forms are compared against analytical solutions and the solutions of the FLUENT code that uses the conservative form. The results clearly showed that the semi-conservative form of the momentum equations provides better solutions than the non-conservative form, especially for heterogeneous two-phase flows.
Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.