• Title/Summary/Keyword: code complexity

Search Result 596, Processing Time 0.025 seconds

An Overview for the Court of Arbitration for Sport (CAS) as the Authority to Settle the Sports-related Disputes (스포츠분쟁해결기구로서의 스포츠중재재판소(CAS)에 관한 고찰)

  • Sohn, Chang-Joo
    • Journal of Arbitration Studies
    • /
    • v.28 no.1
    • /
    • pp.43-75
    • /
    • 2018
  • The Court of Arbitration for Sport (CAS) was created to focus on the procedural complexity in the resolution of sports-related disputes, confidentiality, the matter of expenses, and the necessity of prompt settlement in the field of international sports. The CAS had originally launched as one of bodies of International Olympic Committee (IOC), but later it became properly operational as an independent organization to facilitate sports-related disputes when the International Council of Arbitration for Sport (ICAS), which came into force in accordance with the Paris Agreement in 1984 and has acted in place of IOC, took responsibility for the administration and financing of the CAS. The CAS is composed of four divisions, the Ordinary Arbitration Division and the Appeals Arbitration Division, the Ad hoc Division created later in 1996 and the CAS Anti-Doping Division (CAS ADD) established as from 2016 only to conduct proceedings and to issue decisions on an alleged anti-doping rule violation, and two (Sydney and New York) permanent decentralized offices. The head office of the CAS is Lausanne, Switzerland. Since CAS ADD was established, CAS Ad hoc Division has had jurisdiction over the appeal case against a decision pronounced by the IOC, an NOC, an international Federation or an Organizing Committee for the Olympic Games. Although there are so many virtues of CAS as a resolution authority for sports-related disputes in terms of its organization, arbitration rules and procedures, it is also true that the CAS has not been showing the consistency. The CAS should overcome these issues through much more advanced system and its instant and fair decisions.

Constant Time Algorithm for the Window Operation of Linear Quadtrees on RMESH (RMESH구조에서 선형 사진트리의 윈도우 연산을 위한 상수시간 알고리즘)

  • Kim, Kyung-Hoon;Jin, Woon-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.3
    • /
    • pp.134-142
    • /
    • 2002
  • Quadtree, which is a hierarchical data structure, is a very important data structure to represent binary images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The window operation is one of important geometry operations in image processing, which extracts a sub-image indicated by a window in the image. In this paper, we present an algorithm to perform the window operation of binary images represented by quadtrees, using three-dimensional $n{\times}n{\times}n$ processors on RMESH(Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to route the locational codes of quardtree on the hierarchical structure of $n{\times}n{\times}n$ RMESH.

Design of an Efficient LDPC Codec for Hardware Implementation (하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계)

  • Lee Chan-Ho;Park Jae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.50-57
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.

Implementation of H.264/SVC Decoder Based on Embedded DSP (임베디드 DSP 기반 H.264/SVC 복호기 구현)

  • Kim, Youn-Il;Baek, Doo-San;Kim, Jae-Gon;Kim, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • Scalable Video Coding (SVC) extension of H.264/AVC is a new video coding standard for media convergence by providing diverse videos of different spatial-temporal-quality layers with a single bitstream. Recently, real-time SVC codecs are being developed for the application areas of surveillance video and mobile video, etc. This paper presents the design and implementation of a H.264/SVC decoder based on an embedded DSP using Open SVC Decoder (OSD) which is a real-time software decoder designed for the PC environment. The implementation consists of porting C code of the OSD software from PC to DSP environment, profiling the complexity performance of OSD with further optimization, and integrating the optimized decoder into the TI Davinci EVM (Evaluation Module). 50 QCIF/CIF frames or 15 SD frames per second can be decoded with the implemented DSP-based SVC decoder.

Design and Performance Evaluation of OFDM-CDIM System Using Multiple Modes (다중 모드를 사용하는 OFDM-CDIM 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.515-522
    • /
    • 2018
  • An orthogonal frequency division multiplexing with coded direct index modulation(OFDM-CDIM) system that can achieve higher performance and spectral efficiency than previous OFDM systems is proposed. Previous OFDM with index modulation(IM) and OFDM-IM using dual modes systems allocate additional data to indices of respective subcarriers through combining operation with high complexity and then transmit them. However, the proposed system directly allocates the mode selection information to each subcarrier without performing additional operations. Then, the system selects and transmits one symbol in the selected mode. Furthermore, only the data allocated to the index of the subcarrier is encoded, and a good performance improvement effect is obtained with a high code rate. Simulation results show quantitatively that an OFDM-CDIM system using four modes improves bit error rate performance and transmission efficiency in additive white Gaussian noise and Rayleigh fading channel environments compared with a conventional OFDM system using 4-ary quadrature amplitude modulation.

Performance of Cooperative Networks with Differential Distributed Modulation using Mixed Signaling Scheme (혼합된 신호 방식을 적용한 차등 분산 변조 협력 네트워크의 성능)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1061-1068
    • /
    • 2019
  • Cooperative networks transmit signals form the source node to the destination node via several relay node where the combining and demodulation of relay aided signals provide the benefit of performance enhancement and data rate increment. In general, a repetitive manner transmission scheme in which the received signal from the source node is amplified/re-generated and forward to the destination node is widely used. In this paper, we analyzed the performance of cooperative networks using the mixed transmission scheme. The conventional modulation scheme is used in the source-relay links, and space-time code is applied in the relay-destination links. To reduce the complexity of the overall system, we adopt differential modulation which bypasses channel state information. We analyze bit error rate (BER) of the proposed system by considering the number of relay nodes, and the performances depending on the strength of transmission signal in the source-relays and rely-destination links are compared. In addition, we also discuss the system performance with the signal strength and the number of relay nodes simultaneously.

The Automatic Management of Classification Scheme with Interoperability on Heterogeneous Data (이기종 데이터 간 상호운용적 분류체계 관리를 위한 분류체계 자동화 방안)

  • Lee, Won-Goo;Hwang, Myung-Gwon;Lee, Min-Ho;Shin, Sung-Ho;Kim, Kwang-Young;Yoon, Hwa-Mook;Sung, Won-Kyung;Jeon, Do-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2609-2618
    • /
    • 2011
  • Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Interoperability between heterogeneous domains is a very important point considered in the field of scholarly information service as well information standardization. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. Especially, This paper shows that automatic method for interoperability between heterogeneous scholarly classification code structures will be effective in enhancing the information service system.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Simplified Load Distribution Factor Equation for the Design of Composite Steel Girder Bridges (강합성교 설계를 위한 하중분배계수 간략식)

  • Chung, Wonseok
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.131-138
    • /
    • 2005
  • The AASHTO wheel load distribution factor (LDF) equation has been with us since 1931 and has undergone minor modifications. In 1994, an entirely new procedure was introduced in the AASHTO LRFD code based on parametric studies and finite element analyses. However, this LDF equation involves a longitudinal stiffness parameter, the design of which is not initially known. Thus, an iterative procedure is required to correctly determine the LDF value. The increased level of complexity puts undue burden on the designer resulting in a higher likelihood for misinterpretation and error. In this study, based on current AASHTO LRFD framework, a new simplified equation is developed that does not require an iterative procedure. A total of 43 representative composite steel girder bridges are selected and analyzed using a finite element model.The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the proposed simplified equation is expected to streamline the determination of LDF for bridge design without sacrificing safety.

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.