• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.026 seconds

Hydrophobic property of surface glaze of ceramic tiles by copper powder addition (구리 분말 첨가를 통한 도자타일 표면유약의 소수화 특성)

  • Choi, Cheong-Soo;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.215-221
    • /
    • 2019
  • Ceramic tiles, which are widely used as interior and exterior materials for construction, have recently been required to have pollution prevention function. In order to remove contaminants, many researches of ceramic tiles with hydrophilic surface property through $TiO_2$ coating and hydrophobic surface property by improving the flow of water droplets have been proceeded. Expecially, it is very important to develop a surface glaze having hydrophobicity through a sintering process above $1000^{\circ}C$ without an additional coating process and the degradation of mechanical properties. In this study, surface glaze with copper powder was applied to manufacture of ceramic tile. Contact angle of ceramic tile according to thickness of surface glaze layer was investigated after the conventional sintering process. The contact angle of the ceramic tile surface without the copper powder was shown to be $25.3^{\circ}$, which is close to hydrophilic surface. However, the contact angle was increased up to $109.8^{\circ}$ when the thickness of surface glaze with the copper powder was $150{\mu}m$. The excellent hydrophobic property of the surface glaze with copper powder was resulted from the cellular structure of copper particles on the glaze surface. In addition, the mechanical properties of the developed hydrophobic ceramic tiles such as bending strength, chemical resistance, abrasion resistance, and frost resistance were well maintained and meet the criteria of 'KS L 1001 Ceramic tile'.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization (이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성)

  • Park, Aeri;Kim, Sumin;Kim, Hyun;Han, Jong Hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.25-37
    • /
    • 2020
  • In this study, hybridization of graphene oxide and metal was carried out by the functional groups containing oxygen and thermal treatment for reduction in order to enhance the electrical conductivity and magnetic properties of graphene materials. Graphene-metal hybrid materials were synthesized using the oxygen-containing functional groups (-OH, -COOH and so on) on the surface of graphene oxide by replacing them with metal ions via ion exchange method as well as thermal reduction. The metals used in this study were Fe, Ag, Ni, Zn, and Fe/Ag, and it was confirmed that metal particles of uniform size were well dispersed on the graphene surface through SEM, TEM, and EDS. All of the metal particles on the graphene surface had an oxide-crystalline structure. To check the electrical properties, sheet resistance of the rGO-metal hybrid sample was measured on the PET film made by the dip-coating, and the specific resistance was calculated by measuring the thickness of the specimen through SEM. As a result, the specific resistance was in the range of 2.14×10-5 and 3.5×10-3 ohm/cm.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

Analysis on Adhesion Properties of Composite Electrodes for Lithium Secondary Batteries using SAICAS (SAICAS를 이용한 리튬이차전지용 복합전극 결착특성 분석)

  • Byun, Seoungwoo;Roh, Youngjoon;Jin, Dahee;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.28-38
    • /
    • 2018
  • Although the adhesion properties of composite electrodes are important for securing long-term reliability and realizing high energy density of lithium secondary batteries, related research has not been carried out extensively due to the limitation of measurement technology. However, surface and interfacial cutting analysis system(SAICAS), which can measure the adhesion properties while cutting and peeling a coating layer of $1{\sim}1000{\mu}m$ thickness, has been developed and applied for analyzing the adhesion properties of composite electrodes for lithium secondary batteries. Thus, this review presents not only the principle and measurement method of SAICAS but also comparison results between SAICAS and conventional peel test. In addition, application examples of SAICAS are introduced in the study of electrode design optimization, new binder derivation study, and binder distribution in composite electrode. This suggests that SAICAS is an analytical method that can be easily applied to investigate the adhesion properties of composite electrodes for lithium secondary batteries.

Syntheses of 70% Solids Acrylic Resin and Comparative Study in Physical Properties as Acrylic Urethane Resin Coatings (고형분 70% 아크릴수지 합성과 아크릴-우레탄 도료의 도막물성 비교 연구)

  • Kim, Seong-Kil;Park, Hyong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.476-487
    • /
    • 2021
  • To prepare acrylic resin coatings containing 70% of solids, we used n-butyl methacrylate(BMA), methyl methacrylate(MMA), 2-hydroxyethyl methacrylate(2-HEMA), and acetoacetoxyethyl acrylate(AAEA), caprolactone acrylate(CLA) as raw materials, the glass transition temperature(Tg) of acrylic copolymer was adjusted around 50 ℃. The viscosity and molecular weight of the acrylic resins was increased with increasing OH values. Di-tert-amyl peroxide was found to be the suitable initiator to get high-solids acrylic resins. The optimum reaction conditions found in the study are 5 wt% of initiator, 4 wt% of chain transfer agent, 4 hrs of dropping time, and 140 ℃ of reaction temperature. The structure of the synthesized resins were characterized by FT-IR and 1H-NMR spectroscopy. Number average molecular weight of 1900~2600 and molecular wight distribution of 1.4~2.1 were obtained. Crosslinked acrylic urethane clear coatings were obtained by curing reaction between the synthesized acrylic resins and hexamethylene diisocyanate trimer(Desmodur N-3300), the equivalent ratio of NCO/OH was 1.2/1.0. The physical properties from the following studies were carried out: viscosity(Zahn cup #2), adhesion, drying time, pot-life, pensil hardness, and 60° specular gloss. Various properties of the acrylic urethane clear coatings were also evaluated on the coating specimens. Adhesion property to a substrate, drying time, pot-life, pencil hardness, and 60° specular gloss of prepared paint showed quite good properties. Futhermore, prepared paint containing 10% of CLA showed quite good properties for adhesion, low viscosity and high hardness.

Fabrication of Polymer Thin Films on Solid Substrates (고체 기판에 고분자 박막의 고정화)

  • Kim, Min Sung;Jeong, Yeon Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.200-204
    • /
    • 2010
  • Surface properties are important for determining the functions and uses of materials. So modification of materials with polymer thin films has emerged as an important method to control the physical and chemical properties of the surface layer. We report a simple and effective method to photochemically attach thin polymeric layers to solid surface without chemical derivatization of the substrate and/or the polymer. The system is based on a photoreactive poly(4-vinylpyridine) (P4VP) thin film which is formed on the $SiO_{2}$ surface via spin coating. This substrate is then covered with another polymer film that is reacted with the benzyl radical moieties by UV irradiation. As a result of photochemical reaction, a thin layer of the later polymer is covalently bound to the surface of P4VP. Unbounded polymer is removed by sonication. The thickness of the attached film is a function of the irradiation time and the molecular weight of the polymer. Spatially defined polymer thin films can be fabricated by way of photolithography.

A Study on the Curing Characteristics and the Synthesis of Polyurethane Acrylate Hybrid Emulsion (폴리우레탄 아크릴레이트 하이브리드 에멀젼의 합성 및 경화특성에 관한 연구)

  • Han, Sang-Hoon;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.132-137
    • /
    • 2006
  • Polyurethane acrylate hybrid emulsions were prepared by seeded polymerization techniques. In the synthesis, seeded polyurethane dispersion containing a carboxylic group was used to endow hydrophilicity to the hybrid emulsion and various acrylates such as methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (2-HEMA), n-butyl acrylate (n-BA) and acrylic acid (AAc) were used to endow hydrophobicity. The particle size and distribution of various emulsion particles such as polyurethane acrylate hybrid emulsion, polyurethane dispersion homopolymer, acrylate emulsion, and physical blending emulsion were measured by a particle size analyzer. The average particle size of hybrid emulsion was greater than physical blending emulsion. And tensile strength, 100% modulus, elongation, and swelling properties of the polyurethane acrylate hybrid emulsion were studied and compared with those of polyurethane homopolymer, acrylate emulsion, and physically blended compositor, respectively. To improve chemical and physical resistance, this paper review a melamine hardener and compares it for effects on the physical properties of cured coating.

A Study on the Hand of the Fabrics Treated with Chitosan-polyurethane Mixture Solution -Thermal Curing of Cotton, Polyester, and Nylon Fabrics- (Chitosan-polyurethane 혼합 용액으로 처리된 직물의 태 연구 - 면, 폴리에스터, 나일론 직물의 열 Curing -)

  • Kwak Jung-Ki;Jeon Dong-Won;Kim Jong-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.997-1007
    • /
    • 2005
  • The textile finishing methods utilizing chitosan have been mostly focused on the applications in the improvement of the dyeing of cotton fabrics, or the improvement of hand of the cotton or wool fabrics. On the other hand, it Is difficult to find the application examples in the synthetic fiber fabrics including polyester and nylon fabrics. The aim of this study is to improve the stiffness and the poor wash fastness of the fabrics treated only with chitosan. We tried to improve the softness by employing chitosan and polyurethane mixture solution and to prevent the detachment of the chitosan from the fabric. The treatment was applied to cotton, polyester, and nylon fabrics. The change of the properties of the treated fabrics were investigated. The optimum finishing condition was sought by changing the mixture ratio of the chitosan/PU(polyurethane) solutions. The adjusted ratios of the chitosan/PU solutions were 1 : 0, 1 : 0.25, 1 : 0.5, and 1 : 2 during the mixture solution preparation. Using the KES(Kawabata Evaluation System), the physical and mechanical properties of the finished fabric specimens were analyzed, and hand values of the specimens were calculated through the use of translational formulas. According to the chemical composition of the fibers, chitosan solution or chitosan/PU mixture exhibited wide range of coating effect. Since the chitosan acid solution has high polarity, the bonding force with the cotton fibers is high. By the appropriate addition of PU in the chitosan treatment of cotton, KOSHI and HARI values of the fabric improved. The air permeability of the chitosan/PU treated cotton fabric specimen improved, resulting in the highest value at the mixture of chitosan : PU=1:0.25.