• Title/Summary/Keyword: coastal structures

Search Result 690, Processing Time 0.036 seconds

A Nested OGCM Simulations with Restart Dataset --Strategy for Simulating Fine Structures of Circulation for NW Pacific

  • Park, Byung-Ho;Wei Zexun;Guohong Fang;Park, Young-Jin
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.182-187
    • /
    • 2000
  • Laboratory for Coastal and Ocean Dynamics Studies at Sungkyunkwan University and Department of Physical Oceanography, Institute of Oceanology, Chinese Academy of Sciences has been working on cooperative studies on ocean circulation. (omitted)

  • PDF

Effect of containment reinforcement on the seismic response of box type laterite masonry structures - an analytical evaluation

  • Unnikrishnan, Sujatha;Narasimhan, Mattur C.;Venkataramana, Katta
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.67-81
    • /
    • 2013
  • Laterite blocks are used for construction of masonry walls since ages in the South-western coastal areas of India. The south-west coastal areas of India lie in zone III of seismic zonation map of Indian code IS 1893-2002. In spite of the fact that laterite is the most favored masonry material in these regions of India, the structural performance of laterite masonry has not been systematically investigated. Again there are no previous studies addressing, in detail, the seismic performance of laterite masonry buildings. Now that these areas are becoming more and more important from point of view of trade and commerce, there is a need for a detailed research on the seismic response of laterite masonry structures located in these areas. The present paper reports the results of such a study of the seismic response of box-type laterite masonry structures. Time history analysis of these structures under El-Centro acceleration has been performed using commercial finite element software ANSYS. Effect of 'containment reinforcement' on the seismic response of box type laterite masonry structures has been evaluated.

Optimum Design of New Type Offshore Wind Power Tower Structure (신형식 해상풍력 구조체 최적 설계)

  • Han, Taek-Hee;Yoon, Gil-Lim;Won, Deok-Hee;Oh, Young-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.388-389
    • /
    • 2012
  • Current offshore wind power towers are made of steel. As the capacity of wind power increases, the tower structures become higher. Steel structures have buckling problem and their increased slenderness ratios make them weak against buckling and vibration. In this study, double skinned composite tubular (DSCT) offshore wind power tower was proposed and its optimum design method was suggested. Fiber reinforced polymer (FRP) and steel were considered as material of the tubes. And both materials satisfied the required capacity.

  • PDF

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures (투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의)

  • Cha, Jong-Ho;Yoon, Han-Sam;Ryu, Cheong-Ro;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

The Study on the Wave Interaction Due to Offshore Structures (파랑과 해안구조물과의 상호작용에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Dho, Hyon-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • The present study is to investigate the effect of wave-structure interaction such as wave oscillation. The theoretical method is based upon the linear diffraction theory obtained by the boundary element method. The water depth and incident wave period in fluid region are assumed to be constant. To investigate the wave interaction due to offshore structures, the numerical program has been developed and the simulation has been carried out by varying the conditions of distance and width of offshore structures. This study can effectively be utilized for safety assessment to various breakwater systems and layout of offshore breakwater in the ocean and coastal field. It can give information for the safety to construct offshore structure and revetment in coastal region.

A Study on the Improvement of the Motion Performance of Floating Marina Structures Considering Korea Coastal Environment (한국해양환경을 고려한 부유식 마리나 구조물의 운동성능 향상에 관한 연구)

  • Kim, Dong-Min;Heo, Sanghwan;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • The aim of this study was to improve the vertical motion performance of floating marina structures and to optimize the shapes of the structures for the Korea coastal environment. The floating body is connected to a plate-shaped submerged body through a connecting line under the water that has a stiff spring that serves to reduce the heave response. This system, which has two degrees of freedom, was modelled to analyze the interaction between the floating body and the submerged body. The vertical motion of the two-body system was compared with the motion of a single body to verify that the system could perform as an optimized model.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Monitoring of Coastal Erosion and Accretion Changes using Sea Walls Surveying (호안측량에 의한 해안침식 및 퇴적 변화량 모니터링)

  • Lee, Hyung-Seok;Um, Dae-Yong;Jang, Eun-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.186-195
    • /
    • 2005
  • Topography of beach line is keeping stability for several years, their soil values have been maintained in balances. Install of coastal structures have caused deformation for beaches and acted as a function to structures. Therefore, quantitative prediction of beaches topography according to structure install is required to prevent the beaches deformation and progress proper coastal preservation work. In this study, we analyzed coastal changes caused by erosion and accretion according to development and drew up a cross-section to share 8 stations using coordinates and depth surveying in groin of Soheuksan island port. Elevation distribution and changes by observation period is calculated -0.30m~+0.20m after comparing results of five months in October 7, 2004 surveying results and fell into insignificance. We thinks periodic observation of coastal erosion and accretion take place for the season and long-term coastal changes in beaches width is analyzed.

  • PDF