• Title/Summary/Keyword: coastal engineering fields

Search Result 82, Processing Time 0.026 seconds

The Study on Constructing Underground Wall to Prevent Seawater Intrusion on Coastal Areas (지하수댐 물막이벽 시공법과 해안지역 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.215-234
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control, Groundwater Dam had initiated its construction by RDC(former KARICO) in early eighties in Korea and 4 of it in total were added more until late eighty. However, this technique has shrunken its application due to gradually decreased yield rate after sever years of construction. After we studied several existing sites precisely, we concluded that the main reason of decreasing yield rate was come form engineering roughness on construction in early nineties. Theoretically, the technique itself seemed to be little detectives however, there were a little application in the fields in Korea. With the recent advance in engineering fields, those defects in construction would be no longer obstacle to construct underground wall and the technique could be a one of major ground water production technique in the future. It is essential to study following items thoroughly before select the appropriate site. The topography and the site of the underground wall, aquifer distribution, the specific technique for wall construction to block groundwater flow effectively and strict quality control during construction are critical. The surface and ground water monitoring data should be collected. Sustainability of the Groundwater Dam with huge groundwater abstraction in long term should be based on the long-term water balance analysis for each site. The water quality, environmental effect analysis and maintenance achedule should be also analyzed and planned in prior. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method

  • Kuroiwa, Masamitsu;Abualtayef, Mazen;Takada, Tetsushi;Sief, Ahmed Khaled;Matsubara, Yuehi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • The development of a numerical model using the fractional area/volume obstacle representation (FAVOR) method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D) beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.

A Proposal of New Breaker Index Formula Using Supervised Machine Learning (지도학습을 이용한 새로운 선형 쇄파지표식 개발)

  • Choi, Byung-Jong;Park, Chang-Wook;Cho, Yong-Hwan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.384-395
    • /
    • 2020
  • Breaking waves generated by wave shoaling in coastal areas have a close relationship with various physical phenomena in coastal regions, such as sediment transport, longshore currents, and shock wave pressure. Therefore, it is crucial to accurately predict breaker index such as breaking wave height and breaking depth, when designing coastal structures. Numerous scientific efforts have been made in the past by many researchers to identify and predict the breaking phenomenon. Representative studies on wave breaking provide many empirical formulas for the prediction of breaking index, mainly through hydraulic model experiments. However, the existing empirical formulas for breaking index determine the coefficients of the assumed equation through statistical analysis of data under the assumption of a specific equation. In this paper, we applied a representative linear-based supervised machine learning algorithms that show high predictive performance in various research fields related to regression or classification problems. Based on the used machine learning methods, a model for prediction of the breaking index is developed from previously published experimental data on the breaking wave, and a new linear equation for prediction of breaker index is presented from the trained model. The newly proposed breaker index formula showed similar predictive performance compared to the existing empirical formula, although it was a simple linear equation.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.

A Study on the Numerical Calculation for Shallow Water Waves Considering the Wind Direction Characteristics of Typhoon (태풍의 풍향특성을 고려한 천해파 산정에 관한 연구)

  • Lee, Kyung-Seon;Kim, Jung-Tae;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.1-6
    • /
    • 2007
  • While a typhoon is traveling, characteristics of its wind fields are continuously changing, producing severe changes in local water level and wave conditions, especially, when a typhoon comes into shallow water. However, there have not been many studies related to local typhoon effects, especially, considering real time changes of wind direction related to the coastal topography. In the study, the characteristics of the wind field by typhoon and topographical characteristics in shallow water are considered, as well as conditions of wave climate estimation. These are performed by the SWAN (Simulating waves nearshore) model, in order to estimate the growth of wave energy due to the wind field. It can be strongly suggested that the wave energy of theof an inner bay should be estimated when the direction of the bay entrance and the wind direction of the typhoon are identical. The result of the numerical calculations is in better agreement with the observed data than the result of the conventional estimation techniques.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

The Multidirectional Random Wave Diffraction in a Partial-Reflecting Harbor due to a Submarine Pit (Pit에 의한 부분반사율을 갖는 항내에서의 다방향 불규칙 파랑회절에 관한 연구)

  • Kim, Sung-Duk;Lee, Hong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.291-299
    • /
    • 2008
  • The present study is to estimate the effects of diffracted wave fields in a harbor and around harborentrance due to random waves, when a navigation channel is dredged in the vicinity of the a harbor entrance. The cross sections of harbor boundary are considered to be partial or full reflection in this study. The numerical simulation has been performed by the boundary element method, which is to discrete segments of pit- and harbor- boundary with the algorism of auto generated elements. The incident wave conditions are specified using discretized forms of the Mitsuyasu's frequency spectrum and directional function. The results of the present numerical simulation agreed well with those of the published experimental data. It is shown that the ratios of wave height reduction are about 20% for the case of fully reflecting boundary, and 10% for the case of partially reflecting boundary by the effect of placing a pit, respectively.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level (지하수위 변화에 따른 호안 주변 지반내의 흐름특성)

  • Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.408-417
    • /
    • 2007
  • Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.