Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level

지하수위 변화에 따른 호안 주변 지반내의 흐름특성

  • Kim, Chang-Hoon (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Do-Sam (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Hur, Dong-Soo (Institute of marine industry, Department of Ocean Civil Engineering, Gyeongsang National University)
  • 김창훈 (한국해양대학교 건설환경공학부) ;
  • 김도삼 (한국해양대학교 건설환경공학부) ;
  • 허동수 (경상대학교 토목환경공학부 해양산업연구소)
  • Published : 2007.10.25

Abstract

Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.

최근, 해수욕장으로서의 기능 창출 뿐만 아니라 해안공간의 이용 및 개발에 따른 자연해변의 소실을 대체할 수 있는 인공해변이 건설되고 있다. 그리고, 파랑작용에 의한 매립토사의 유출로부터 인공해변을 보호하기 위한 구조물이 필요하며, 일반적으로 호안이 주로 건설된다. 해저지반 상부에 건설되는 호안의 안정성을 위하여 필히 검토되어야 할 사항 중의 하나가 호안 배후의 지하수위 거동이다. 그러나, 비선형파랑과 지하수위의 거동특성이 인공해변의 토사유출 및 구조물의 안정성에 중요한 요소로 작용함에도 불구하고 이에 대한 연구는 거의 수행되지 않았다. 본 연구에서는 비선형파랑과 호안 및 지하수위로 인한 흐름간의 동적 상호작용을 살펴보기 위하여 정수위와 지하수위와의 차이를 고려할 수 있는 수치파동수로를 개발하였다. 개발된 수치파동수로를 이용하여, 지하수위 변화가 호안 주변 지반내의 수리학적 특성에 미치는 영향을 살펴보았고, 지하수위의 변화에 따른 파동장 및 간극수 흐름, 간극수압 및 와도를 수치적으로 재현하였다. 결과로부터 지하수위의 변화에 따른 호안 주변 지반내의 수리학적 특성들이 어떻게 영향을 받는지 알 수 있었다.

Keywords

References

  1. 허동수, 김창훈, 이광호, 김도삼 (2005). 파.구조물.지반의 비선형 동적응답해석을 위한 직접수치해석 기법의 개발. 한국해안.해양공학회지, 17(2), 86-97
  2. 대우건설 (2002). 00항 3단계 준설토 투기장 가호안 축조공사 - 기본설계보고서. 98p
  3. Ergun, S. (1952). Fluid flow through packed columns. Chem Eng., 48(2), 89-94 https://doi.org/10.1016/0009-2509(93)80285-X
  4. Fujima, K. (2002) : Review; Development of Numerical wave flume CADMAS-SURF(SUperRoller Flume for computer Aided Design of MAritime Structure), Proc. Coastal and Ocean Eng., Korea, pp. 1-13
  5. Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. kansai Soc. Nav. Archit. Japan, 217, 1-1
  6. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. Comp. Phys., 39, 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  7. Hur, D.S. (2004). Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed. Ocean Eng., 31, 1295-1311 https://doi.org/10.1016/j.oceaneng.2003.12.005
  8. Hur, D.S. and Mizutani, N. (2003). Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Eng., 47, 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  9. Hur, D.S., Nakamura, T. and Mizutani, N. (2007). Sand suction mechanism in artificial beach composed of rubble mound breakwater and reclaimed sand area. Ocean Eng., 34, 1104-1119 https://doi.org/10.1016/j.oceaneng.2006.08.005
  10. Lee, K.H., Mizutani, N., Hur, D.S. and Kamiya, A. (2007). The effect of groundwater on topographic changes in a gravel beach. Ocean Eng., 34, 605-615 https://doi.org/10.1016/j.oceaneng.2005.10.026
  11. Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field. Fluid Dyn. Res., 8, 231-251 https://doi.org/10.1016/0169-5983(91)90045-K
  12. Putnam, J.A. (1949). Loss of wave energy due to percolation in a permeable seabed bottom. Trans. of American Geophsical Union, 30(3), 349-356 https://doi.org/10.1029/TR030i003p00349
  13. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwaters. Proceedings of 23rd Intl. Conf. of Coastal Eng., ASCE, 1517-1530
  14. Shijie Liu and Jacob H. Masliyah. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86, 229-252 https://doi.org/10.1016/S0377-0257(98)00210-9
  15. Van Gent, M.R.A. (1995). Porous flow through rubble-mound material. J. Waterw. Port Coast. Ocean Eng., 121, 176-181 https://doi.org/10.1061/(ASCE)0733-950X(1995)121:3(176)
  16. 高橋重雄, 鈴木高二朗, 德淵克正, 下迫健一郞, 善功企(1996). 防波護岸の吸い出し災害のメカニズムに關する水理 模型實驗. 海岸工學論文集, 第43卷, 666-670
  17. 海岸開發技術硏究センタ (2001). CADMAS-SURF 數値波動水路の開發.硏究. 社團法人 海岸開發技術硏究センタ, 日本
  18. 前野詩朗, 藤田修司(2001). VOF-FEM モデルによる波動場における護岸周地盤の動的擧動の檢討. 海岸工學 論文集, 第 48卷, 971-975
  19. 酒井哲郞, 後藤仁志, 原田英治, 許伶宅, 岩本晃幸(2004). 人工海浜砂層內空洞の形成過程に及ぼす埋設物の影響. 海岸 工學論文集, 第51卷, 806-810