• 제목/요약/키워드: coaggregation

검색결과 19건 처리시간 0.013초

Porphyromonas gingivalis와 Tannerella forsythia의 응집반응 (Coaggregation between Porphyromonas gingivalis and Tannerella forsythia)

  • 엄흥식;이석우;박재홍
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

Effect of Sub-minimal Inhibitory Concentration of Chlorhexidine on Biofilm Formation and Coaggregation of Early Colonizers, Streptococci and Actinomycetes

  • Lee, So Yeon;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.209-215
    • /
    • 2016
  • Chlorhexidine has long been used in mouth washes for the control of dental caries, gingivitis and dental plaque. Minimal inhibitory concentration (MIC) is the lowest concentration of an antimicrobial substance to inhibit the growth of bacteria. Concentrations lower than the MIC are called sub minimal inhibitory concentrations (sub-MICs). Many studies have reported that sub-MICs of antimicrobial substances can affect the virulence of bacteria. The aim of this study was to investigate the effect of sub-MIC chlorhexidine on biofilm formation and coaggregation of oral early colonizers, such as Streptococcus gordonii, Actinomyces naeslundii and Actinomyces odontolyticus. The biofilm formation of S. gordonii, A. naeslundii and A. odontolyticus was not affected by sub-MIC chlorhexidine. However, the biofilm formation of S. mutans increased after incubation with sub-MIC chlorhexidine. In addition, cell surface hydrophobicity of S. mutans treated with sub-MIC of chlorhexidine, decreased when compared with the group not treated with chlorhexidine. However, significant differences were seen with other bacteria. Coaggregation of A. naeslundii with A. odontolyticus reduced by sub-MIC chlorhexidine, whereas the coaggreagation of A. naeslundii with S. gordonii remained unaffected. These results indicate that sub-MIC chlorhexidine could influence the binding properties, such as biofilm formation, hydrophobicity and coaggregation, in early colonizing streptococci and actinomycetes.

Effect of Sub-Minimal Inhibitory Concentrations of Antibiotics on Biofilm Formation and Coaggregation of Streptococci and Actinomycetes

  • Lee, So Yeon;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.189-196
    • /
    • 2015
  • Minimal inhibitory concentration (MIC) is the lowest antibiotic concentration that inhibits the visible growth of bacteria. Sub-minimal inhibitory concentration (Sub-MIC) is defined as the concentration of an antimicrobial agent that does not have an effect on bacterial growth but can alter bacterial biochemistry, thus reducing bacterial virulence. Many studies have confirmed that sub-MICs of antibiotics can inhibit bacterial virulence factors. However, most studies were focused on Gram-negative bacteria, while few studies on the effect of sub-MICs of antibiotics on Gram-positive bacteria. In this study, we examined the influence of sub-MICs of doxycycline, tetracycline, penicillin and amoxicillin on biofilm formation and coaggregation of Streptococcus gordonii, Streptococcus mutans, Actinomyces naeslundii, and Actinomyces odontolyticus. In this study, incubation with sub-MIC of antibiotics had no effect on the biofilm formation of S. gordonii and A. naeslundii. However, S. mutans showed increased biofilm formation after incubation with sub-MIC amoxicillin and penicillin. Also, the biofilm formation of A. odontolyticus was increased after incubating with sub-MIC penicillin. Coaggregation of A. naeslundii with S. gordonii and A. odontolyticus was diminished by sub-MIC amoxicillin. These observations indicated that sub-MICs of antibiotics could affect variable virulence properties such as biofilm formation and coaggregation in Gram-positive oral bacteria.

Phospholipid 이중층막에서 Methylene Blue와 Thionine의 Metachromasy (Metachromasy of Methylene Blue and Thionine on the Phospholipid Bilayer Membrane)

  • 김기준;이후설
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.43-49
    • /
    • 1996
  • Metachromatic properties of admixture of thionine and methylene blue(MB) in aqueous solution and phospholipid bilayer membrane have been studied by absorption spectroscopy. When thionine and MB were mixed, new coaggregate has been formed because of MB was redistributed to thionine aggregate. In phosphlipid bilayer membrane system, the highly concentrated thionine was easily formed the coaggregation with MB moiety independent of MB concentration, and absorption band of admixture were more transferred to short wavelength than aqueous system. In monomeric thionine concentration, the coaggregation band was observed at the middle wavelength between the site of monomeric thionine and the site of dimeric MB in the presence of lipid bilayer membrane.

A murine periodontitis model using coaggregation between human pathogens and a predominant mouse oral commensal bacterium

  • Liu, Mengmeng;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • 제52권2호
    • /
    • pp.141-154
    • /
    • 2022
  • Purpose: C57BL/6 mice, which are among the most common backgrounds for genetically engineered mice, are resistant to the induction of periodontitis by oral infection with periodontal pathogens. This study aimed to develop a periodontitis model in C57BL/6 mice using coaggregation between human pathogens and the mouse oral commensal Streptococcus danieliae (Sd). Methods: The abilities of Porphyromonas gingivalis ATCC 33277 (Pg33277), P. gingivalis ATCC 49417 (Pg49417), P. gingivalis KUMC-P4 (PgP4), Fusobacterium nucleatum subsp. nucleatum ATCC 25586 (Fnn), and F. nucleatum subsp. animalis KCOM 1280 (Fna) to coaggregate with Sd were tested by a sedimentation assay. The Sd-noncoaggregating Pg33277 and 2 Sd-coaggregating strains, PgP4 and Fna, were chosen for animal experiments. Eighty C57BL/6 mice received oral gavage with Sd once and subsequently received vehicle alone (sham), Fna, Pg33277, PgP4, or Fna+PgP4 6 times at 2-day intervals. Mice were evaluated at 5 or 8 weeks after the first gavage of human strains. Results: Fnn, Fna, and PgP4 efficiently coaggregated with Sd, but Pg33277 and Pg49417 did not. Alveolar bone loss was significantly higher in the PgP4 group at both time points (weeks 5 and 8) and in all experimental groups at week 8 compared with the sham group. The PgP4 group presented greater alveolar bone loss than the other experimental groups at both time points. A higher degree of alveolar bone loss accompanied higher bacterial loads in the oral cavity, the invasion of not only PgP4 but also Sd and Fna, and the serum antibody responses to these bacteria. Conclusions: Periodontitis was successfully induced in C57BL/6 mice by oral infection with a P. gingivalis strain that persists in the oral cavity through coaggregation with a mouse oral commensal bacterium. This new model will be useful for studying the role of human oral bacteria-host interactions in periodontitis using genetically engineered mice.

형광분광분석법에 의한 Methylene Blue와 Thionine의 Metachromasy (Metachromasy of Metylene Blue and Thionine by Analytical Fluorescence Spectroscopy)

  • 이후설
    • 한국응용과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.103-114
    • /
    • 1997
  • Metachromatic properties of admixture of methylene blue(MB) and thionine in aqueous solution has been studied by fluorescence spectroscopy. In spite of nonfluorescence character has been MB itself, mixing MB to monomeric concentration of thionine, new coaggregation band has been formed in shorter wave length than fluorescence of thionine because of MB was redistributed to thionine aggregate. It suggested that coaggregate of MB and thionine were more tightly formed than the each dye aggregate.

Weissella confusa Strain PL9001 Inhibits Growth and Adherence of Genitourinary Pathogens

  • Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.680-685
    • /
    • 2004
  • The capability of lactic acid bacteria (LABs) to adhere to intestinal epithelial cells and vaginal epithelial cells is an important factor in the formation of a barrier to prevent the colonization of pathogenic bacteria. In addition, the ability to coaggregate with pathogens and production of antimicrobial agents also allow LABs to fight against pathogens. In this work, Weissella confusa PL9001 was tested for its ability to inhibit the growth and adherence of genitourinary pathogens, including Candida albicans, Escherichia coli, Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium (VRE), isolated from the urine of hospitalized female patients. W. confusa PL9001 was found to coaggregate with the four pathogens, as observed with a light microscope and scanning electron microscope. In competition, exclusion, and displacement tests, the adherence of the pathogens to T24 bladder epithelial cells was also inhibited by W. confusa PL9001. Accordingly, these results suggest that W. confusa PL9001 is potentially useful for both preventive and therapeutic treatment of genitourinary infections.

메주로부터 분리한 토착 Bacillus sp. BCNU 9028의 프로바이오틱스로서 이용 가능성 (Probiotic Potential of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju)

  • 신화진;방지훈;최혜정;안철수;정영기;김동완;주우홍
    • 생명과학회지
    • /
    • 제22권5호
    • /
    • pp.605-612
    • /
    • 2012
  • 포자형성균은 사람과 동물용의 프로바이오틱 제제로서 사용되어져 왔다. 포자형성균의 낮은 pH에 대한 안정성과 위내 생육저해 환경에 생존능은 프로바이오틱 제제로서 매력적이다. 본 연구는, 한국 전통 대두 발효 식품의 종균인 BCNU 9028균주를 메주로부터 분리하였다. 생리학적, 생화학적 특성과 16S 리보좀 DNA 염기서열 분석 결과 BCNU 9028균주는 $Bacillus$에 속하는 것을 확인하였다. $Bacillus$ sp. BCNU 9028은 pH 2.5에서 92%의 생존률을 보였으며, 0.3% 담즙산에서도 저항성을 나타냈다. 그리고, 식품 병원성균과의 응집정도와 자가결합능에 의해 $Bacillus$ sp. BCNU 9028는 $Listeria$ $monocytogenes$, $S.$ $aureus$$E.$ $coli$와 같은 식품 병원성균의 생물막형성과 부착을 저해할 수 있는 것을 확인하였다. BCNU 9028의 소수성 특성(63.3%)은 장관내 부착능이 우수할 것으로 나타났다. 특히, $Bacillus$ sp. BCNU 9028 균주는 그람양성 및 그람음성 병원성균 모두에 항균력을 갖는 것을 확인하였다. 이상의 결과로 $Bacillus$ sp. BCNU 9028균주가 프로바이오틱스로서 이용가능성이 있음을 제시하였다.

Porphyromonas gingivalis biofilm에 대한 면역혈청의 침투력에 대한 Fusobacterium nucleatum의 조절효과 (Fusobacterium nucleatum modulates serum binding to Porphyromonas gingivalis biofilm)

  • 최점일;김성조;김수진
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.661-668
    • /
    • 2001
  • P. gingivalis를 단독면역하거나 또는 Fusobacterium nucleatum 선면역 후 P. gingivalis 항혈청을 각각 얻어냈다. 두 종류의 항혈청이 P. gingivalis biofilm을 침투해 들어가는 능력을 confocal laser scanning microscope를 이용하여 비교 감증하였다. 항혈청의 P. gingivalis에 대한 avidity index도 측정하였다. 결과적으로 F. nucleatum의 선면역은 P. gingivalis 특이 항혈청에 대해 세균성 biofilm의 침투능력을 저하시키고, 동일한 세균에 대한 avidity도 감소시켰다.

  • PDF

구취를 유발하는 혐기성 세균의 증식을 억제하는 유산 간균의 분리 및 동정 (Isolation and identification of Lactobacillus inhibiting the production of halitosis by anaerobic bacteria)

  • 김미형;김선미
    • 한국치위생학회지
    • /
    • 제4권2호
    • /
    • pp.153-163
    • /
    • 2004
  • There are normal inhabitants doing medically useful functions in the body. There are many kinds of bacteria performing specific functions in the oral cavity. Two strains of lactic acid bacteria were isolated from normal inhabitants of children 's oral cavity, which inhibited the the production of halitosis by anaerobic bacteria. The authors identified the isolates by the lest using API 50 CHL medium kit. 1. Two isolates were Gram-positive bacilli and produced hydrogen peroxide. 2. The optical density was 1.286 in the supernatant of Fusobacterium nucleatum after vortexing for 30 minutes, whereas in the supernatant of combined Fusobacterium nucleatum and each isolate, they were reduced to 0.628 and 0.497, which the percentages of coaggregation between them were 29.4% and 57.8%, respectively. 3. The optical density of Fusobacterium nucleatum precipitate was 1.794 in the culture media containing cysteine and $FeSO_4$, being reduced to 1.144 and 0.915 in the coaggregated precipitates of Fusobacterium nucleatum and each isolate. 4. The optical density of Porphyromonas gingivalis precipitate was 1.932 in the culture media, being reduced to 1.170 and 1.266 in the coaggregated precipitates of Porphyromonas gingivalis and each isolate. 5. When two isolates were tested with API 50 CHL medium kit, those were identified as Lactobaciallius salivarius and Lactobacillus delbrueckii subsp. lactis.

  • PDF