Weissella confusa Strain PL9001 Inhibits Growth and Adherence of Genitourinary Pathogens

  • Published : 2004.08.01

Abstract

The capability of lactic acid bacteria (LABs) to adhere to intestinal epithelial cells and vaginal epithelial cells is an important factor in the formation of a barrier to prevent the colonization of pathogenic bacteria. In addition, the ability to coaggregate with pathogens and production of antimicrobial agents also allow LABs to fight against pathogens. In this work, Weissella confusa PL9001 was tested for its ability to inhibit the growth and adherence of genitourinary pathogens, including Candida albicans, Escherichia coli, Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium (VRE), isolated from the urine of hospitalized female patients. W. confusa PL9001 was found to coaggregate with the four pathogens, as observed with a light microscope and scanning electron microscope. In competition, exclusion, and displacement tests, the adherence of the pathogens to T24 bladder epithelial cells was also inhibited by W. confusa PL9001. Accordingly, these results suggest that W. confusa PL9001 is potentially useful for both preventive and therapeutic treatment of genitourinary infections.

Keywords

References

  1. Appl. Environ. Microbiol. v.65 Polyphasic study of the spatial distribution of microoganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations Ampe, F.;N. ben Omar;C. Moizan;C. Wacher;J. P. Guyot
  2. Antimicrob. Agents Chemother. v.45 Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection Asahara, T.;K. Nomoto;M. Watanuki;T. Yokokura https://doi.org/10.1128/AAC.45.6.1751-1760.2001
  3. Gut v.35 Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria Bernet, M. F.;D. Brassart;J. R. Neeser;A. L. Servin https://doi.org/10.1136/gut.35.4.483
  4. Appl. Environ. Microbiol. v.63 The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibaterial substance(s) active in vitro and in vivo Bernet. M. F.;V. Lievin;D. Brassart;J. R. Neeser;A. L. Servin;S. Hudault
  5. Trends Microbiol. v.7 Regulatory networks controlling Candida allbicans morphogenesis Brown, A. J.;N. A. Gow https://doi.org/10.1016/S0966-842X(99)01556-5
  6. Int. J. Syst. Evol. Microbiol. v.52 Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi Choi, H. J.;C. I. Cheigh;,S. B. Kim;J. C. Lee;D. W. Lee;S. W. Choi;J. M. Park;Y. R. Pyun https://doi.org/10.1099/00207713-52-2-507
  7. Urology v.58 Pilot trial of bacterial interference for preventing urinary tract infection Darouiche, R. O.;W. H. Donovan;M. Del Terzo;J. I. Thornby;D. C. Rudy;R. A. Hull https://doi.org/10.1016/S0090-4295(01)01271-7
  8. Microbiology v.146 Transcription factors in Candida albicansenviromental control of morphogenesis Ernst, J. F. https://doi.org/10.1099/00221287-146-8-1763
  9. Ann. Otol. Rhinol. Laryngol. v.110 Biofilm formation on voice prostheses: In vitro influence of probiotics Free, R. H.;H. J. Busscher;G. J. Elving;H. C. van der Mei;R. van Weissenbruch;F. W. Albers https://doi.org/10.1177/000348940111001010
  10. J. Infect. v.185 Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats Gan, B. S.;J. Kim;G. Reid;P. Cadieux;J. C. Howard https://doi.org/10.1086/340126
  11. Clin. Diagn. Lab. Immunol. v.9 Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhammosus GR-1 but not L. rhamnosus GG in the human vagina as demonstrated by randomly amplified polymorphic DNA Gardiner, G. E.;C. Heinemann;A. W. Bruce;D. Beuerman;G. Reid
  12. Appl. Environ. Microbiol. v.68 Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA Heilig, H. G.;E. G. Zoetendal;E. E. Vaughan;P. Marteau;A. D. Akkermans;W. M. de Vos https://doi.org/10.1128/AEM.68.1.114-123.2002
  13. Antonie Van Leeuwenhoek v.82 Genetically modified Streptococcus mutans for the prevention of dental caries Hillman, J. D. https://doi.org/10.1023/A:1020695902160
  14. Int. J. Antimicrob. Agents v.17 Recurrent urinary tract infection in women Hooton, T. M. https://doi.org/10.1016/S0924-8579(00)00350-2
  15. J. Appl. Microbiol. v.92 Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer Horie, M.;A. Ishiyama;Y. Fujihira-Ueki;J. Sillanpaa;T. K. Korhonen;T. Toba https://doi.org/10.1046/j.1365-2672.2002.01539.x
  16. Microbiol. Rev. v.59 Bacteriocins of Gram-positive bacteria Jack, R. W.;J. R. Tagg;B. Ray
  17. FEMS Microbiol. Lett. v.212 Identification of Weissella species by the genus-specific amplified ribosomal DNA restriction analysis Jang, J.;B. Kim;J. Lee;J. Kim;G. Jeong;H. Han https://doi.org/10.1111/j.1574-6968.2002.tb11240.x
  18. Int. J. Syst. Evol. Microbiol. v.52 Weissella koreensis sp. nov., isolated from kimchi Lee, J. S.;K. C. Lee;J. S .Ahn;T. I. Mheen;Y. R. Pyun;Y. H. Park https://doi.org/10.1099/ijs.0.02074-0
  19. Appl. Environl. Microbiol. v.65 Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient Leisner, J. J.;B. Pot;H. Christensen;G. Rusul;J. E. Olsen;W. Wee;K. Muhamad;H. M. Ghazali
  20. Cell v.90 Nonfilamentous C. albicans mutants are avirulent Lo, H. J.;J. R. Kohler;B. DiDomenico;D. Loebenberg;A. Cacciapuoti;G. R. Fink https://doi.org/10.1016/S0092-8674(00)80358-X
  21. Microbial Ecol. Health Dis. v.5 Modulation of adhesion of uropathogenic Enterococcus faecalis to human epithelial cells in vitro by Lactobacillus species MaGroarty, J. A.;V. Lee;G. Reid;A. W. Bruce https://doi.org/10.3109/08910609209141552
  22. J. Appl. Microbiol. v.93 Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets Mastromarino, P.;P. Brigidi;S. Macchia;L. Maggi;F. Pirovano;V. Trinchieri;U. Conte;D. Matteuzzi https://doi.org/10.1046/j.1365-2672.2002.01759.x
  23. Int. J. Antimicrob. Agents v.16 The use of probiotics in medical practice Mombelli, B.;M. R. Gismondo https://doi.org/10.1016/S0924-8579(00)00322-8
  24. Appl. Envir. Microbiol. v.68 Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori Nam, H.;M. Ha;O. Bae;Y. Lee https://doi.org/10.1128/AEM.68.9.4642-4645.2002
  25. Biocell v.25 Adhesion of Lactobacillus vaginal stranis with probiotic properties to vaginal epithelial cells Ocana, V. S.;M. E. Nader-Macias
  26. Br. J. Biomed. Sci. v.59 Vaginal lactobacilli: Self-and co-aggregating ability Ocana, V. S.;M. E. Nader-Macias https://doi.org/10.1080/09674845.2002.11783657
  27. Am. J. Clin. Nutr. v.73 Probiotic agents to protect the urogenital tract against infection Reid, G. https://doi.org/10.1093/ajcn/73.2.437s
  28. FEMS Immunol. Med. Microbiol. v.30 Oral probiotics can resolve urogenital infections Reid, G.;A. W. Bruce;N. Fraser;C. Heinemann;J. Owen;B. Henning https://doi.org/10.1111/j.1574-695X.2001.tb01549.x
  29. J. Clin. Gastroenterol. v.37 New scientific paradigms for probiotics and prebiotics Reid, G.;M. E. Sanders;H. R. Gaskins;G. R. Gibson;A. Mercenier;R. Rastall;M. Roberfroid;I. Rowland;C. Cherbut;T. R. Klaenhammer https://doi.org/10.1097/00004836-200308000-00004
  30. Antimicrob. Agents Chemother. v.45 Multidrug-resistant urinary tract isolates of Escherichia coli: Prevalence and patient demographics in the United States in 2000 Sahm, D. F.;C. Thornsberry;D. C. Mayfield;M. E. Jones;J. A. Karlowsky https://doi.org/10.1128/AAC.45.5.1402-1406.2001
  31. Int. J. Food Microbiol. v.36 Lactic acid bacteria of foods and their current taxonomy Stiles, M. E.;W. H. Holzapfel https://doi.org/10.1016/S0168-1605(96)01233-0
  32. Antimicrob. Agents Chemother. v.45 Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection Takashi, A.;K. Nomoto;M. Watanuki;T. Yokokura https://doi.org/10.1128/AAC.45.6.1751-1760.2001
  33. Appl. Environ. Microbiol. v.65 Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons Tannock, J. W.;A. Tilsala-Timisjarvi;S. Rodtong;J. Ng;K. Munro;T. Alatossava
  34. Appl. Environ. Microbiol. v.67 Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis Walter, J.;C. Hertel;G. W. Tannock;C. M. Lis;K. Munro;W. P. Hammes https://doi.org/10.1128/AEM.67.6.2578-2585.2001