• 제목/요약/키워드: co-evolutionary algorithm

검색결과 53건 처리시간 0.025초

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Co-Evolution of Fuzzy Rules and Membership Functions

  • Jun, Hyo-Byung;Joung, Chi-Sun;Sim, Kwee-Bo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.601-606
    • /
    • 1998
  • In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 김지윤;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.395-398
    • /
    • 2002
  • 본 논문에서는 ‘다목적 함수 최적화 문제(Multi-objective Optimization Problem MOP)’를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론 적용시킨 ‘내쉬 유전자 알고리즘(Nash GA)’과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 알고리즘의 결과를 시뮬레이션을 통하여 비교 검토함으로써 ‘진화적 게임 이론(Evolutionary Game Theory : EGT)’의 두 가지 아이디어 -‘내쉬의 균형(Equilibrium)’과 ‘진화적 안정전략(Evolutionary Stable Strategy . ESS)’-에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해를 탐색할 수 있음을 확인한다.

열교환망 자동합성을 위한 새로운 방법 (A new method for an automated synthesis of heat exchanger networks)

  • 이규황;김민석;이인범;고홍철
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.256-263
    • /
    • 1998
  • Among process synthesis problems, the heat exchanger network (HEN) has been subjected to the most concentrated effort because this kind of problems was well defined for solving it and 20-30% energy savings could be realized in the present chemical processes. In this paper, we use an evolutionary approach for HEN synthesis because this approach can overcome the local optimum and combine some heuristic rules. The basic evolutionary approach is composed of three parts, that is, initialization step, growth step and mutation step, as in the simulated annealing and genetic algorithm. This algorithm uses the ecological rule that a better cell will live and worse cell should decompose after repeated generations. With this basic concept, a new procedure is developed and a more efficient method is proposed to generate initial solutions. Its effectiveness is shown using test examples.

  • PDF

유전자 발현 분석을 위한 공진화적 바이클러스터링 기법 (Gene Expression Analysis by Co-evolutionary Biclustering)

  • 정제균;김수진;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.22-24
    • /
    • 2006
  • 마이크로어레이는 전체 유전체 수준의 mRNA 발현 여부에 대한 측정이 가능하다는 점에서 분자생물학의 실험 도구로서 가장 강력한 도구 중에 하나로 부각되어 있다. 현재까지 마이크로어래이의 결과로부터 유사한 발현 패턴을 찾기 위한 여러 가지 바이클러스터링 알고리즘들이 개발되어 왔다. 하지만 대다수의 알고리즘들이 최적의 바이클러스터들을 찾기보다는 일정 수준의 가능한 바이클러스터의 결과만을 제시하고 있다. 본 논문에서는 다른 개체집단들과 상호 진화하는 공진화적 학습에 의한 진화연산 기법을 통하여 유전자-조건의 매트릭스로부터 열과 행을 동시에 클러스터링하는 공진화적 바이클러스터링 알고리즘(co-evolutionary biclustering algorithm: CBA)을 제안하고자 한다. CBA는 유전자발현 데이터에서 유전자-조건의 상호의존적인 부성분들로 구성된 최적화 문제에 적합한 계산방식이라고 할 수 있다. 인간 유전자 발현 데이터에 대한 실험 결과. 제시한 알고리즘은 이전의 알고리즘에 비해 발견한 바이클러스터의 패턴 유사도에 있어서 우수한 성능을 보이고 있다.

  • PDF

공진화를 이용한 신경회로망의 구조 최적화 (Structure optimization of neural network using co-evolution)

  • 전효병;김대준;심귀보
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.67-75
    • /
    • 1998
  • In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.

  • PDF

해군분석모델용 AI-CGF를 위한 시나리오 생성 모델 설계(I): 진화학습 (Design of Scenario Creation Model for AI-CGF based on Naval Operations, Resources Analysis Model(I): Evolutionary Learning)

  • 김현근;강정석;박강문;김재우;김장현;박범준;지승도
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.617-627
    • /
    • 2022
  • Military training is an essential item for the fundamental problem of war. However, there has always been a problem that many resources are consumed, causing spatial and environmental pollution. The concepts of defense modeling and simulation and CGF(Computer Generated Force) using computer technology began to appear to improve this problem. The Naval Operations, Resources Analysis Model(NORAM) developed by the Republic of Korea Navy is also a DEVS(Discrete Event Simulation)-based naval virtual force analysis model. The current NORAM is a battle experiment conducted by an operator, and parameter values such as maneuver and armament operation for individual objects for each situation are evaluated. In spite of our research conducted evolutionary, supervised, reinforcement learning, in this paper, we introduce our design of a scenario creation model based on evolutionary learning using genetic algorithms. For verification, the NORAM is loaded with our model to analyze wartime engagements. Human-level tactical scenario creation capability is secured by automatically generating enemy tactical scenarios for human-designed Blue Army tactical scenarios.

구조-하중 설계를 고려한 공진화 구조 설계시스템 (Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MDO Problem of Topology Design under Uncertainty)

  • 양영순;유원선;김봉재
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.281-290
    • /
    • 2003
  • Co Evolutionary Structural Design(CESD) Framework is presented, which can deal with the load design and structural topology design simultaneously. The load design here is the exploration algorithm that finds the critical load patterns of the given structure. In general, the load pattern is a crucial factor in determining the structural topology and being selected from the experts어 intuition and experience. However, if any of the critical load patterns would be excluded during the process of problem formation, the solution structure might show inadequate performance under the load pattern. Otherwise if some reinforcement method such as safety factor method would be utilized, the solution structure could result in inefficient conservativeness. On the other hand, the CESD has the ability of automatically finding the most critical load patterns and can help the structural solution evolve into the robust design. The CESD is made up of a load design discipline and a structural topology design discipline both of which have the fully coupled relation each other. This coupling is resolved iteratively until the resultant solution can resist against all the possible load patterns and both disciplines evolve into the solution structure with the mutual help or competition. To verify the usefulness of this approach, the 10 bar truss and the jacket type offshore structure are presented. SORA(Sequential Optimization & Reliability Assessment) is adopted in CESD as a probabilistic optimization methodology, and its usefulness in decreasing the computational cost is verified also.

E-customized Product: User-centered Co-design Experiences

  • Li, Pei;Liu, Zi Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3680-3692
    • /
    • 2020
  • The purpose of this study is to orient users' touchpoints in co-design experience, to identify their need via visualized experience map, to recommend valid design information in online e-customization services. A user-centered co-design experience map (UCEM) is adopted to analyze the relation between users' desire and time spent, so as to evaluate the online co-design experiences. Based on evolutionary algorithm and fuzzy theory, data of this study is collected from 30 participants. The data was analyzed by descriptive analysis in SPSS, and frequency query and word cloud in NVivo. Employing design category and evaluating users' time spent, the findings are that (a) vamp color matching is consistent with interview data; (b) supported by qualitative feedback, the virtual experience map played an important role in the co-design process and the visualized interaction process; and (c) participants prefer to get more information and professional help on color matching and exterior design. Based on the findings in design category, future work should be focused on developing a better understanding of design resource recommendations and multi-stakeholder communication.

비용 최소화를 위한 플래어 시스템의 배관 서포트 타입 최적설계 (Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost)

  • 박정민;박창현;김태수;최동훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.325-329
    • /
    • 2011
  • Floating, production, storage and offloading (FPSO) is a production facility that refines and saves the drilled crude oil from a drilling facility in the ocean. The flare system in the FPSO is a major part of the pressure relieving system for hydrocarbon processing plants. The flare system consists of a number of pipes and complicated connection systems. Decision of pipe support types is important since the load on the support and the stress in the pipe are influenced by the pipe support type. In this study, we optimally determined the pipe support types that minimized the support cost while satisfying the design constraints on maximum support load, maximum nozzle load and maximum pipe stress ratio. Performance indices included in the design constraints for a specified design were evaluated by pipe structural analysis using CAESAR II. Since pipe support types were all discrete design variables, an evolutionary algorithm (EA) was used as an optimizer. We successfully obtained the optimal solution that reduced the support cost by 27.2% compared to the initial support cost while all the design requirements were satisfied.