• Title/Summary/Keyword: co-cycle

Search Result 1,786, Processing Time 0.038 seconds

A Study of Monitoring and Control Model of Closed Cycle Diesel Propulsion System using Microprocessor ($\mu$-processor를 이용한 폐쇄사이클 디젤추진시스템의 모니터링 및 제어모델에 관한 연구)

  • 유춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.894-905
    • /
    • 2004
  • The closed cycle diesel propulsion system is free from the problem of the intake air, exhaust gas and their control that are associated with the conventional diesel propulsion system. The system is composed of a main engine, an exhaust cooler. a $CO_2$ scrubber and a $O_2$ mixer. In this paper, a hardware using microprocessor is proposed in order to monitor and control the oxygen and ratio of specific heat for underwater diesel propulsion system. Also simulation is carried out to ascertain the performance of proposed system.

Surface Encoder Based on the Half-shaded Square Patterns (HSSP)

  • Lee, Sang-Heon;Jung, Kwang-Suk;Park, Eui-Sang;Shim, Ki-Bon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.82-84
    • /
    • 2008
  • A surface encoder based on the Half-shaded square pattern (HSSP) is presented. The HSSP working as reference grid is composed of the straight lines which are easy to be fabricated and make measuring time short. Since the periodic cell is separated in ON/OFF by the $45^{\circ}$ straight line, the duration from the starting point of scanning to the first rising edge and the duty cycle of the pulse train vary with respect to the position of the starting point. And the relationship between X and Y position and the duration, and duty cycle is described in the simple linear equation. Therefore, it is possible to measure X and Y position with the measured duration and duty cycle without calculating load. Through the test set-up, the feasibility of the proposed surface encoder was verified. Also the future works for improvement of performance were suggested.

Performance Analysis of an ORC System for Two Different Working Fluids (두 종류의 다른 작동유체가 ORC 시스템의 성능에 미치는 영향)

  • Chang, Hong-Soon;Song, Yeong-Kil;Han, Young-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.413-417
    • /
    • 2013
  • The organic Rankine Cycle (ORC) uses a kind of refrigerant as a working fluid that evaporates at relatively low temperature, as the Rankine Cycle uses superheated steam as the working fluid. A small scale ORC test bench was installed, and two different working fluids (R245fa and R134a) were injected into the test bench. The test bench was in operation with the two different working fluids under the same conditions. The effects against the system performance from the different working fluids were analysed, and root causes were identified. Other factors reflecting the power generation efficiency were also found. A conclusion was drawn, that R245fa makes the system perform better, than R134a.

Effects of Low Incident Energy Levels of Infrared Laser Irradiation on the Proliferation of Candida Albicans Part II : A Short Term Study during the Cell Cycle

  • Sam-Kun Kim;Phil-Yeon Lee;Ki-Suk Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 1994
  • This study was performed to investigate the biostimulation effects of low level laser therapy (LLLT) on the fungus, Candida albicans, during the short term of cell cycle. Samples were divided into 6 groups which were P7, P9, P11, P15< CW and CO. All samples were irradiated for 1 minute with 2 hours of elapsed time during about 27 hours of the cell cycle of Candida albicans, and the optical density was assessed by spectrophotometry every 2 hours. It was found that there was no difference between the control and any other groups irradiated with 2 hours of short interval.

  • PDF

An Accurate Gate-level Stress Estimation for NBTI

  • Han, Sangwoo;Lee, Junho;Kim, Byung-Su;Kim, Juho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.139-144
    • /
    • 2013
  • Negative bias temperature instability (NBTI) has become a major factor determining circuit reliability. The effect of the NBTI on the circuit performance depends on the duty cycle which represents the stress and recovery conditions of each device in a circuit. In this paper, we propose an analytical model to perform more accurate duty cycle estimation at the gate-level. The proposed model allows accurate (average error rate: 3%) computation of the duty cycle without the need for expensive transistor-level simulations Furthermore, our model estimates the waveforms at each node, allowing various aging effects to be applied for a reliable gate-level circuit aging analysis framework.

A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구)

  • 김태훈;조진호
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

A Study on OCC type PFC Converter for PSU of LCD TV (LCD TV의 전원장치를 위한 OCC 방식 PFC Converter에 관한 연구)

  • Kim, Min-Young;Yoon, Seong-Sik;Kim, Tae-Kue;Ahn, Ho-Kyun;Yoon, Tae-Sung;Kim, Sung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1126-1127
    • /
    • 2007
  • This paper presents One Cycle Control type PFC converter for power system Unit of LCD TV. A control technique known as One Cycle Control contends reductions in complexity, cost, design time, and PCB real estate, without a sacrifice in performance. In this paper, design and experiment on 300W One Cycle Control type PFC Converter for Power System Unit of LCD TV.

  • PDF

A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination (복합발전기 조합별 증분비 곡선 재설정에 관한 연구)

  • Hong, Sang-Beom;Choi, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

QUANTITATIVE ANALYSIS FOR THE RISK MANAGEMENT OF A SUPER-HIGHRISE RESIDENCE

  • Shuzo Furusaka;Takashi Kaneta;Makoto Ohsaki;Kazunori Harada;Yasuhiro Orita;Sohsuke Arai;And Norikazu Katoh
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.748-753
    • /
    • 2005
  • In a super-highrise residence project, a project manager needs to form the long-term risk management plan which covers the problems from the beginning of project to the time of demolition. The cause and responsibility for a risk are clarified and quantitatively evaluated through the life cycle of a project. Development of the system which supports a risk strategy effectively is needed as a project becomes complex. In this paper, through the life cycle of a specific super-highrise residence project, a risk phenomenon is specified from a viewpoint of each participant, and the mathematical model is formulated choosing the combination of the optimal strategy against a risk quantitatively within a fixed risk strategy budget.

  • PDF

Thermal Analysis and Temperature Measurement of Tilting Pad Bearings Supporting a Power Turbine for the Supercritical CO2 Cycle Application (초임계 CO2 발전용 파워터빈을 지지하는 틸팅패드 베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Kim, Byungok;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.