• Title/Summary/Keyword: co-cultivation

Search Result 713, Processing Time 0.034 seconds

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season (대목 종류에 따른 저온기 토경재배에서의 토마토 생육 특성 분석)

  • Lee, Hyewon;Lee, Jun Gu;Cho, Myeong Cheoul;Hwang, Indeok;Hong, Kue Hyon;Kwon, Deok Ho;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.194-203
    • /
    • 2022
  • Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.

Growth, Yield, and Leaf-macronutrient Content of Grafted Cherry Tomatoes as Influenced by Rootstocks in Semi-forcing Hydroponics (반촉성 수경재배시 대목에 따른 방울토마토 접목묘의 생육, 수량 및 엽 내 양분 함량)

  • Hyewon Lee;Hyo Bong Jeong;Jun Gu Lee;Indeok Hwang;Deok Ho Kwon;Yul Kyun Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • There are many different types of cultivation in tomatoes for year-round production. One of them, semi-forcing cultivation is characterized by growing seedlings in winter season. If grafted seedlings are used in winter season that energy cost can be reduced, because they have tolerance to cold stress. This study was conducted to analyze the rootstock performance by measuring the growth, yield, and leaf-macronutrient content of cherry tomatoes grown in semi-forcing hydroponics. Three domestic rootstocks 'HSF4', '21LM', '21A701', and a control cultivar 'B-blocking' were grafted onto jujube-shaped cherry tomato (Lycopersicon esculentum L.) commercial cultivar 'Nonari'. The total yield per plant with grafted cherry tomato '21A701' was 3,387g, which was 11%, 22% and 24% higher than the yield with 'B-blocking', non-grafted one and 'HSF4'. The stem diameter of '21A701' was thick with 8.26mm, whereas non-grafted one was thin with 7.23mm at 160 days after transplanting. The flowering position of '21LM' was 34% and 47% higher than the flowering position of 'B-blocking' and non-grafted one at 153 days after transplanting. The NO3-N concentration in petiole sap of '21LM' was the highest with 1,746mg·L-1 and non-grafted one and 'HSF4' were the lowest with 1,252mg·L-1 and 1,245mg·L-1 at 167 days after transplanting. The results indicated that rootstock/scion combinations in cherry tomatoes can affect the plant growth, yield, and the concentration of different NO3-N in leaves at the late growth stage. Both '21A701' and '21LM' have vigorous root system, which influence the growth and yield increased.

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

Effects of Rhodobacter sp. SA16 on Lettuce(Lactuca sativa L.) in Plastic Film House (시설 상추에 대한 Rhodobacter sp. SA16 처리 효과)

  • Lee, Young-Han;Jeong, Han-Taek;Yun, Han-Dae
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • This experiment was conducted to determine the development of mixed organic fertilizer using photosynthetic bacteria and mass production of mixed microbial compound for the environment-friendly agriculture. Photosynthetic bacteria, Rhodobacter sp. SA16 was isolated from soil collected by plastic film house. The SA16 strain was identified based on 16S rDNA sequence analysis and it is closely related to Rhodobacter sp.(100% similarity). The mixed organic fertilizer using SA16 was made of $N-P_2O_5-K_2O=60-10-20\;g\;kg^{-1}$ with combined soybean cake, sesame cake, powdered blood, fish meal, powdered bones and red-yellow soil. The mixed organic fertilizer 0.45, 0.90 and 1.35 Mg $ha^{-1}$ application in Ihyeon series was treated based on soil testing for lettuce cultivation in plastic film house. These results showed that the yield was increased the 18 and 19%over control by the mixed organic fertilizer application 0.45 and 0.90 Mg $ha^{-1}$, respectively. In the physical properties of the soil, the porosity of mixed organic fertilizer 1.35 Mg $ha^{-1}$ treatment was highest at 58.8%. Our results clearly revealed that the organic fertilizer using Rhodobacter sp. SA16 and mass production of mixed strains could be a useful technology in pursuing environment-friendly agriculture.

Establishment of Pre-Harvest Residue Limit (PHRL) of Methoxyfenozide and Novaluron on Peaches (복숭아 중 Methoxyfenozide와 Novaluron의 생산단계 농약잔류허용기준 설정)

  • Cho, Kyung-Won;Park, Jae-Hun;Kim, Ji-Won;Yoon, Ji-Yeong;Moon, Hye-Ree;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • Methoxyfenozide and novaluron were sprayed with single and triple treatments separately on peach during cultivation period. Samples were collected over 14 days, 8 times in total (0, 2, 4, 6, 8, 10, 12, 14 days). Methoxyfenozide and novaluron were extracted with acetone and partitioned with dichloromethane, and analyzed by HPLC/DAD. Method Quantitation Limit (MQL) were both 0.005 mg/kg, average recoveries of methoxyfenozide at two fortification levels of 0.05 and 0.25 mg/kg were determined $92.7{\pm}2.9%$ and $102.8{\pm}3.1%$, and novaluron were $98.2{\pm}4.8%$ and $96.7{\pm}9.0%$, respectively. The biological half-life of methoxyfenozide was about 4.41 days at single treatment, and 4.24 days at triple treatments. The biological half-life of novaluron was about 14.81 days at single treatment, and 14.50 days at triple treatments. Dissipation of pesticides on peach was influenced by growth dilution effect. In case of application of methoxyfenozide and novaluron following guidelines on safe use of pesticides, the final residue level was predicted to be lower than Maximum Residue Limit (MRL).

Study on Eco-friendly Control Effect of Natural Plant Extract Mixtures on Mulberry Popcorn Disease and Mulberry Sucker (천연 식물추출물 복합제를 이용한 오디균핵병 및 뽕나무이에 대한 친환경 방제기술 개발)

  • Ahn, In;Maeng, Woon-Young;Lee, In-Eae;Kim, Sam-Hyun;You, Ji-Won;Chang, Ki-Woon;Kim, Bae-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.338-342
    • /
    • 2013
  • BACKGROUND: Two Field tests were conducted at Buan and Yangpyung in 2012 and 2013 to confirm controlling effect of mulberry popcorn disease and mulberry Sucker pests which are becoming serious in mass cultivation area of eco-friendly farming mulberry. METHODS AND RESULTS: As the treatments, 4 Natural products and 3 microbials were applied and 4 mulching materials were used. On the prevent effect of mulberry popcorn disease(Sclerotinia shiraiana) by using mulching materials, nonwoven fabric mulching showed worse effect than non-mulched treatment plot. Moreover, rice straw mulching showed significantly worse effect compare to nonwoven fabric and herb mulching treatments. Natural plant extracts and microbials showed 40~65% control value in 2013, which is little bit worse than 2012 results. On the control effect of mulberry Sucker(Amomoneura mori), organic products which combined with neem, sophora and derris showed excellent result as similar control level of Thiophanate-methyl. It means the chemical products can be replaced with organic product. CONCLUSION(S): According to the 2 years studied results, integrate eco-friendly farming measures are recommended for control of mulberry popcorn disease, because any single method is seemed not sufficient enough. However, natural plant extracts mixture is recommended as a product to control of mulberry Sucker.

Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production (아민기가 코팅된 규조토 담체를 이용한 초고온성 고세균 Thermococcus onnurineus의 세포 고정화 및 수소생산 연구)

  • Bae, Seung Seob;Na, Jeong Geol;Lee, Sung-Mok;Kang, Sung Gyun;Lee, Hyun Sook;Lee, Jung-Hyun;Kim, Tae Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.236-240
    • /
    • 2015
  • Previously we reported that the hyperthermophilic archaeon, Thermococcus onnurineus NA1 is capable of producing hydrogen (H2) from formate, CO or starch. In this study, we describe the immobilization of T. onnurineus NA1 as an alternative means of H2 production. Amine-coated silica particles were effective in immobilizing T. onnurineus NA1 by electrostatic interaction, showing a maximum cell adsorption capacity of 71.7 mg-dried cells per g of particle. In three cycles of repeated-batch cultivation using sodium formate as the sole energy source, immobilized cells showed reproducible H2 production with a considerable increase in the initial production rate from 2.3 to 4.0 mmol l−1 h−1, mainly due to the increase in the immobilized cell concentration as the batch culture was repeated. Thus, the immobilized-cell system of T. onnurineus NA1 was demonstrated to be feasible for H2 production. This study is the first example of immobilized cells of hyperthermophilic archaea being used for the production of H2.

GUS Gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.) (오이에서 체세포배 발생을 통한 GUS유전자의 발현 및 식물체 재생)

  • Kim, Hyun-A;Lee, Boo-Youn;Jeon, Jin-Jung;Choi, Dong-Woog;Choi, Pil-Son;Utomo, Setyo Dwi;Lee, Jae-Hyoek;Kang, Tong-Ho;Lee, Young-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.275-280
    • /
    • 2008
  • One of the limitation for Agrobacterium-mediated transformation via organogenesis from cotyledon explants routinely in cucumber is the production of chimeric plants. To overcome the limitation, Agrobacterium-mediated transformation system via somatic embryogenesis from hypocotyl explants of cucumber (c.v., Eunsung) on the selection medium with paromomycin as antibiotics was developed. The hypocotyl explants were inoculated with Agrobacterium tumefaciens strain EHA101 carrying binary vector pPTN290; then were subsequently cultured on the following media: co-cultivation medium for 2 days, selection medium for $5{\times}14$ days, and regeneration medium. The T-DNA of the vector (pPTN290) carried two cassettes, Ubi promoter-gus gene as reporter and 35S promoter-nptll gene conferring resistance to paromomycin as selectable agent. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to paromomycin indicated by the growth of putative transgenic calli on selection medium amended with 100mg/L paromomycin, and GUS gene expression. Forty eight clones (5.2%) with GUS gene expressed of 56 callus clones with resistance to paromomycin were independently obtained from 928 explants inoculated. Of 48 clones, transgenic plants were only regenerated from 5 clones (0.5%) at low frequency. The histochemical GUS assay in the transgenic seeds ($T_1$) also revealed that the gus gene was successfully integrated and segregated into each genome of transgenic cucumber.

Comparison of the Morphological Characteristics and the 24S rRNA Sequences of Cochlodinium polykrikoides and Gyrodinium impudicum (Cochlodinium polykrikoides와 Gyrodinium impudicum 형태특성과 24S rRNA 유전자 염기서열 비교)

  • Park, Jong-Gyu;Park, Young-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 1999
  • When the first red tide alert by Cochlodinium polykrikoides was alarmed around the Oenarodo coast on Aug. 27, 1997, there co-occurred two chain-forming naked dinoflagellates which were different sized but looked fairly similar. The analyses of 24S rRNA sequences of these species showed that their gene sequences had only 74.9% identity. This low value implies that they are quite different species. After isolation and cultivation of each species, the morphological characteristics were observed. This revealed that the larger species ranging from 20 to 35 ${\mu}m$ was the well known, Cochlodinium polykrikoides and the smaller one ranging from 12 to 25 ${\mu}m$ was Gyrodinium impudicum which had not been reported in Korea. As their 24S rRNA sequences had not been analysed yet, we deposited the sequences in Genbank. At that time of the investigation. the red tide was caused by G. impudicum of which maximum cell counts reached up to 30,000 cells $ml^{-1}$. In this study we describe the morphological characteristics and the behavioral patterns of each species which can be easily observed with light microscope or stereomicroscope. In addition, their morphology transformed by the fixation with Lugol's solution are also characterized. which can help to discriminate each one in the fixed sample.

  • PDF

Current status and prospects of kiwifruit (Actinidia chinensis) genomics (참다래 유전체 연구 동향)

  • Kim, Seong-Cheol;Kim, Ho Bang;Joa, Jae-Ho;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.342-349
    • /
    • 2015
  • Kiwifruit is a new fruit crop that was commercialized in the late 1970s. Recently, its cultivation and consumption have increased rapidly worldwide. Kiwifruit is a dioecious, deciduous, and climbing plant having fruit with hairs and various flesh colors and a variation in ploidy level; however, the industry consists of very simple cultivars or genotypes. The need for efficient cultivar improvement together with the evolutional and biological perspectives based on unique plant characteristics, have recently encouraged genome analysis and bioinformatics application. The draft genome sequence and chloroplast genome sequence of kiwifruit were released in 2013 and 2015, respectively; and gene annotation has been in progress. Recently, transcriptome analysis has shifted from previous ESTs analysis to the RNA-seq platform for intensive exploration of controlled genetic expression and gene discovery involved in fruit ascorbic acid biosynthesis, flesh coloration, maturation, and vine bacterial canker tolerance. For improving conventional breeding efficiency, molecular marker development and genetic linkage map construction have advanced from basic approaches using RFLP, RAPD, and AFLP to the development of NGS-based SSR and SNP markers linked to agronomically important traits and the construction of highly saturated linkage maps. However, genome and transcriptome studies have been limited in Korea. In the near future, kiwifruit genome and transcriptome studies are expected to translate to the practical application of molecular breeding.