• 제목/요약/키워드: clustering validity functions

검색결과 12건 처리시간 0.03초

밀도 함수를 이용한 근사적 퍼지 클러스터링 (Approximate fuzzy clustering based on a density function)

  • 손세호;권순학;최윤혁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.94-97
    • /
    • 2000
  • We introduce an approximate fuzzy clustering method, which is simple but computationally efficient, based on density functions in this paper. The density functions are defined by the number of data within the predetermined interval. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘 (An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation)

  • 퉁 투룽;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2012
  • FCM(fuzzy c-means)은 일반적으로 영상 분할에서 좋은 성능을 보인다. 하지만 공간 정보를 사용하지 않는 일반적인 FCM 알고리즘은 낮은 대비의 영상, 경계선이 뚜렷하지 않은 영상, 잡음이 포함된 영상의 분할에는 좋지 않은 성능을 보인다. 이와 같은 문제를 해결하기 위해 본 논문에서는 3x3 크기의 윈도우를 이용하여 윈도우 내의 중심 픽셀과 주변 픽셀간의 거리 정보를 소속 함수에 추가한 개선된 공간적 퍼지 클러스터링 알고리즘을 제안한다. 본 논문에서는 분할 계수, 분할 엔트로피, Xie-Bdni 함수와 같은 클러스터링 검증 함수를 이용하여 FCM 기반의 다양한 클러스터링 알고리즘과 제안한 알고리즘과의 성능을 비교하였다. 성능 평가 결과 제안한 알고리즘이 기존의 FCM기반의 클러스터링 알고리즘보다 클러스터링 검증 함수에서 성능이 우수함을 확인 할 수 있었다.

Comparison of time series clustering methods and application to power consumption pattern clustering

  • Kim, Jaehwi;Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • 제27권6호
    • /
    • pp.589-602
    • /
    • 2020
  • The development of smart grids has enabled the easy collection of a large amount of power data. There are some common patterns that make it useful to cluster power consumption patterns when analyzing s power big data. In this paper, clustering analysis is based on distance functions for time series and clustering algorithms to discover patterns for power consumption data. In clustering, we use 10 distance measures to find the clusters that consider the characteristics of time series data. A simulation study is done to compare the distance measures for clustering. Cluster validity measures are also calculated and compared such as error rate, similarity index, Dunn index and silhouette values. Real power consumption data are used for clustering, with five distance measures whose performances are better than others in the simulation.

퍼지 신경망을 이용한 온라인 클러스터링 방법 (A On-Line Pattern Clustering Technique Using Fuzzy Neural Networks)

  • 김재현;서일홍
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.199-210
    • /
    • 1994
  • Most of clustering methods usually employ a center or predefined shape of a cluster to assign the input data into the cluster. When there is no information about data set, it is impossible to predict how many clusters are to be or what shape clusters take. (the shape of clusters could not be easily represented by the center or predefined shape of clusters) Therefore, it is difficult to assign input data into a proper cluster using previous methods. In this paper, to overcome such a difficulty a cluster is to be represented as a collection of several subclusters representing boundary of the cluster. And membership functions are used to represent how much input data bllongs to subclusters. Then the position of the nearest subcluster is adaptively corrected for expansion of cluster, which the subcluster belongs to by use of a competitive learning neural network. To show the validity of the proposed method a numerical example is illustrated where FMMC(Fuzzy Min-Max Clustering) algorithm is compared with the proposed method.

  • PDF

지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할 (Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering)

  • 나이마 알람저;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권12호
    • /
    • pp.83-93
    • /
    • 2012
  • 본 논문에서는 기존의 퍼지 클러스터링 기반 이미지 분할의 성능과 계산 효율을 개선하기 위해 퍼지 클러스터링의 목적 함수를 수정하는 이미지 분할 프레임워크를 제안한다. 제안하는 이미지 분할 프레임워크는 주변 픽셀들에 가중치를 부여함으로써 현재 센터 픽셀 연산을 위해 주변 픽셀들의 중요성을 고려하는 지역 가중치 적용 퍼지 클러스터링 기법을 포함한다. 이러한 가중치들은 각 멤버쉽들의 중요성을 표시하기 위해 현재 픽셀과 대응되는 각 주변 픽셀들 사이의 거리차에 의해 결정되어 지며, 이러한 프로세서는 향상된 클러스터링 성능을 보장한다. 제안하는 방법의 성능을 평가하기 위해 분할 계수, 분할 엔트로피, Xie-Bdni 함수, Fukuyzma-Sugeno 함수와 같은 네 가지 클러스터 유효성 함수를 이용하여 분석하였다. 모의실험 결과, 제안한 방법은 기존의 다른 퍼지 클러스터링 기법들보다 클러스터 유효성 함수들뿐만 아니라 분할과 조밀도 측면에서 우수한 성능을 보였다.

A Horizontal Partition of the Object-Oriented Database for Efficient Clustering

  • Chung, Chin-Wan;Kim, Chang-Ryong;Lee, Ju-Hong
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권1호
    • /
    • pp.164-172
    • /
    • 1996
  • The partitioning of related objects should be performed before clustering for an efficient access in object-oriented databases. In this paper, a horizontal partition of related objects in object-oriented databases is presented. All subclass nodes in a class inheritance hierarchy of a schema graph are shrunk to a class node in the graph that is called condensed schema graph because the aggregation hierarchy has more influence on the partition than the class inheritance hierarchy. A set function and an accessibility function are defined to find a maximal subset of related objects among the set of objects in a class. A set function maps a subset of the domain class objects to a subset of the range class objects. An accessibility function maps a subset of the objects of a class into a subset of the objects of the same class through a composition of set functions. The algorithm derived in this paper is to find the related objects of a condensed schema graph using accessibility functions and set functions. The existence of a maximal subset of the related objects in a class is proved to show the validity of the partition algorithm using the accessibility function.

  • PDF

퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석 (Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering)

  • 유시호;원홍희;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1591-1601
    • /
    • 2004
  • 유전자를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 집단화시켜서 유전자 집단의 기능을 분석하는데 이용되고 있다. 유전자들은 다양한 functional family에 속할 수 있기 때문에 각 유전자의 클러스터를 하나로 결정짓는 기존의 클러스터링 방법보다 퍼지 클러스터링 방법이 유전자 클러스터링에 더 적합하다. 본 논문에서는 피지 클러스터 결과를 효과적으로 검증할 수 있는 베이지안 검증 방법을 제안한다. 베이지안 검증 방법은 확률기반의 방법으로 주어진 데이타에 대해 가장 큰 사후확률을 가진 클러스터 분할을 선택한다. 먼저 본 논문에서 제안하는 베이지안 검증 방법과 기존의 대표적인 4가지 퍼지 클러스터 검증 방법들을 4가지 데이타에 대해 퍼지 c-means알고리즘을 대상으로 비교 평가한다. 그리고 발아효모 세포주기 발현 데이타를 클러스터링한 후, 제안하는 방법으로 그 결과를 검증하여 분석한다.

밀도함수를 이용한 근사적 퍼지 클러스처링 (Approximate Fuzzy Clustering Based on Density Functions)

  • 권석호;손세호
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.285-292
    • /
    • 2000
  • 자료 분석 과정을 살펴 보면 1) 자료가 갖는 경향 평가, 2) 클러스터 분석, 3) 클러스터의 타당성 조사라는 과정을 거쳐 이루어진다. 이 분석법은 2) 및 3) 단계의 반복 수행으로 인하여 많은 계산 시간이 소요되므로 비효율적인 방법이라 할 수 있다. 본 논문에서는, 이와 같은 단점을 보완하기 위하여 자료가 갖는 개략적 특성을 파악하여 자료 속에 존재하는 클러스터의 근사적 개수 및 중심을 정한 후, 이 정보를 기존의 일반적인 퍼지 클러스터링 알고리즘에 입력하여 클러스터링을 수행하는 밀도함수를 이용한 계층적 구조의 근사적 클러스터링 알고리즘을 제안하고, 예제를 통하여 제안된 알고리즘의 타당성을 보인다.

  • PDF

퍼지 신경망을 이용한 패턴 분류기의 설계 (Design of a pattern classifier using fuzzy neural networks)

  • 김재현;서일홍;김태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.724-730
    • /
    • 1993
  • Most of clustering methods usually employ the center of a cluster to assign the input data into a cluster. When the shape of a cluster could not be easily represented by the center of cluster, however, it is difficult to assign input data into a proper cluster using previous methods. In this paper, to overcome such a difficulty, a cluster is to be represented as a collection of several subclusters. And membership functions are used to represent how much input data belong to subclusters. Then the position of each subcluster is adoptively corrected by use of a competitive learning neural network. To show the validity of the proposed method, a numerical example is illustrated, where FMMC(Fuzzy Min-Max Clustering) algorithm is compared with the proposed method.

  • PDF

Convex polytope을 이용한 퍼지 클러스터링 (Fuzzy clustering involving convex polytope)

  • 김재현;서일홍;이정훈
    • 전자공학회논문지C
    • /
    • 제34C권7호
    • /
    • pp.51-60
    • /
    • 1997
  • Prototype based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. In this paper, we propose a fuzzy clustering method that involves adaptively expanding convex polytopes. Thus, the dependency on the use of prototypes can be eliminated. The proposed method makes it possible to effectively represent an arbitrarily distributed data set without a priori knowledge of the number of clusters in the data set. Specifically, nonlinear membership functions are utilized to determine whether a new cluster is created or which vertex of the cluster should be expanded. For this, the membership function of a new vertex is assigned according to not only a distance measure between an incoming pattern vector and a current vertex, but also the amount how much the current vertex has been modified. Therefore, cluster expansion can be only allowed for one cluster per incoming pattern. Several experimental results are given to show the validity of our mehtod.

  • PDF