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Abstract
The development of smart grids has enabled the easy collection of a large amount of power data. There are

some common patterns that make it useful to cluster power consumption patterns when analyzing s power big
data. In this paper, clustering analysis is based on distance functions for time series and clustering algorithms to
discover patterns for power consumption data. In clustering, we use 10 distance measures to find the clusters that
consider the characteristics of time series data. A simulation study is done to compare the distance measures for
clustering. Cluster validity measures are also calculated and compared such as error rate, similarity index, Dunn
index and silhouette values. Real power consumption data are used for clustering, with five distance measures
whose performances are better than others in the simulation.

Keywords: complexity distance, model-free distance, model-based distance, power consumption,
time series clustering, silhouette

1. Introduction

Smart grids have many advantages over traditional conventional power grids because they enhance
the way electricity is generated, distributed, and consumed by using advanced sensing devices and
controllers that depend on power consumption profiles. With the development of the smart grid tech-
nology, electrical data is accumulating into big data in real time. According to Haben et al. (2015),
the clustering method of the electrical data is changing from a method that has been applied to a large
customer group or the energy data of a high/medium voltage customer to low voltage clustering such
as household level. Clustering algorithms are used to profile individuals’ power consumption and
analyzing their patterns (Al-Jarrah et al., 2017; Tsekouras et al., 2007). This analyzes what energy
suppliers and distribution network operators need to understand how customers use energy and its
impact on voltage networks. Clustering issues are at the heart of many knowledge discovery and data
mining tasks that are also useful in identifying data patterns (Xiong and Yeung, 2004). Clustering is
an unsupervised process such as turning grouping data patterns into clusters, therefore the patterns
within a cluster are similar but different from between the other clusters. The goal of clustering is to
identify structures in an unlabeled data set by objectively organizing data into homogeneous clusters
where the within-cluster-object similarity is minimized and the between-cluster-object dissimilarity is
maximized. Time series clustering is a research area applicable to a wide range of fields (Liao, 2005).
There seems to be an increased interest in time series clustering as a part of temporal data mining

1 Corresponding author: Department of Statistics, Duksung Women’s University, Samyang-ro 144-gil 33, Dobong-gu,
Seoul 01369, Korea. E-mail: jaehee@duksung.ac.kr

Published 30 November 2020 / journal homepage: http://csam.or.kr
c⃝ 2020 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



590 Jaehwi Kim, Jaehee Kim

research. Note that time series clustering may cause some multivariate clustering algorithms to fail,
because the similarity notation at higher dimensions becomes obscure when the time series is very
long (Wang et al., 2006). Therefore, it is necessary to consider clustering using a suitable distance
measure between time series incorporating their dependency.

There are various types of distances used in clustering such as model-free, model-based, and com-
plexity methods (Montero and Vilar, 2014). The model-free method is used to measure the proximity
between two time series based on the closeness of their values at specific points in time. One way is to
compare the autocorrelation function (ACF) between two time series (Bohte et al., 1980; Galeano and
Peña, 2000; Caiado et al., 2006; D’Urso and Maharaj, 2009). Fréchet (1906) calculates the distance
by considering all combinations of the time points between two time series.

Model-based approaches consider that each time series is generated by some kind of model or by
a mixture of underlying probability distributions. Time series are considered similar when model pa-
rameters characterizing individual series or the remaining residuals after fitting the model are similar.
For example, the distance using the correlation of two time series (Golay et al., 1998) is used. The
greater the correlation between two time series, the closer the distance is given. Chouakria and Nagab-
hushan (2007) propose a distance that covers both existing measures of the correlation between the
proximity of observations and the behavior proximity estimates between two time series. Caiado et al.
(2006) compared the periodograms of two time series and expressed them in Euclidean distance form.
For example, the model-based method uses the assumption that each time series follows the ARIMA
model. Piccolo (1990) calculates the distance between two time series using the Euclidean distance
between parameters of the AR models. Maharaj (1996, 2000) compare two time series by setting the
chi-square test statistic using the parameters of the AR models. Kalpakis et al. (2001) calculate the
linear predictive coding (LPC) cepstrum and Euclidean distance between the LPC cepstrums.

Complexity-based approaches compare the levels of complexity of time series. The similarity of
two time series does not rely on specific serial features or the knowledge of underlying models, but on
measuring the level of information shared by both time series. The mutual information between two
series can be formally established using the Kolmogorov complexity concept; however this measure
cannot be computed in practice and must be approximated. There are two ways to consider the
complexity: calculate the complexity of each time series and compare them with each other (Li et al.,
2004; Keogh et al., 2004; Keogh et al., 2007), or to set the weighting function for complexity (Batista
et al., 2011).

In this paper we compare clustering methods for time series and apply them to power consump-
tion times series as power consumption profiling. This practical application is important for load
forecasting, bad data correction, optimal energy resources scheduling. This paper is organized as fol-
lows. Section 2 introduces 10 distance measures considered, and Section 3 provides hierarchical and
K-means clustering methods and clustering comparative measures. Section 4 shows the clustering re-
sults of simulation data and its application to electricity consumption data. Discussions are in Section
5. Clustering analysis is implemented with R program and TSclust package.

2. Dissimilarity measure

Let X = (X1, . . . , XT )′ and Y = (Y1, . . . ,YT )′ denote subsets from two real-valued processes X =
{Xt, t ∈ Z} and Y = {Yt, t ∈ Z}, respectively. Here X and Y are both time series. There are N cases of
time series whose time-length is T in the data set.

2.1. Autocorrelation-based distance
The autocorrelation function is used as a dissimilarity measure and some authors have studied this
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type of measure (Bohte et al., 1980; Galeano and Peña, 2000; Caiado et al., 2006; D’Urso and
Maharaj, 2009). Galeano and Peña (2000) define a distance between X and Y with the estimated
autocorrelations vectors as

dACF(X,Y) =
√(
ρ̂X − ρ̂Y

)′
Ω

(
ρ̂X − ρ̂Y

)
, (2.1)

where ρ̂X =
(
ρ̂1,X, . . . , ρ̂L,X

)′ and ρ̂Y =
(
ρ̂1,Y, . . . , ρ̂L,Y

)⊤ are the estimated autocorrelation vectors of X
and Y respectively. And Ω is a weight matrix. For some L, ρ̂i,X ≈ 0 and ρ̂i,Y ≈ 0 for i > L.

If Ω = I with the uniform weights,

dACFU(X,Y) =

√√√ L∑
i=1

(
ρ̂i,X − ρ̂i,Y

)2. (2.2)

If the geometric weights are decaying according to the autocorrelation lag,

dACFG(X,Y) =

√√√ L∑
i=1

p(1 − p)i (ρ̂i,X − ρ̂i,Y
)2, with 0 < p < 1. (2.3)

Likewise this measure evaluates the dissimilarity between the corresponding spectral representations
of the series.

2.2. Correlation-based distance

Correlation measures the similarity of two series. Golay et al. (1998) propose correlation-based
distances such as

dCor(X,Y) =
√

2 (1 − Cor (X,Y) ) (2.4)

based on the Pearson correlation between X and Y

Cor(X,Y) =

∑T
t=1

(
Xt − X̄

) (
Yt − Ȳ

)
√∑T

t=1

(
Xt − X̄

)2
√∑T

t=1

(
Yt − Ȳ

)2
,

where X̄ and Ȳ are the averages of the time series X and Y respectively.

2.3. An adaptive dissimilarity index covering both proximity on value and on behavior

Chouakria and Nagabhushan (2007) propose a dissimilarity measure that covers both existing mea-
sures of the proximity on observations and temporal correlations for the behavior proximity esti-
mation. The proximity between the behaviors of the series is evaluated by the first-order temporal
correlation coefficient as follows:

CorT(X,Y) =
∑T−1

t=1 (Xt+1 − Xt) (Yt+1 − Yt)√∑T−1
t=1 (Xt+1 − Xt)2

√∑T−1
t=1 (Yt+1 − Yt)2

.

CorT(X,Y) has a value from −1 to 1. The value CorT(X,Y) = 1 means that both series have similar
temporal behavior with a similar direction and instantaneous growth rate. If CorT(X,Y) equals 0,
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there is no monotonicity between X and Y and their growth rate is stochastically linearly independent
(different behaviors). CorT(X,Y) = −1 means that the rate of growth is similar but the direction is
opposite (opposite behaviors). The dissimilarity measure as a function of CorT is

dCorT(X,Y) = ϕk [CorT(X,Y)] · d(X,Y), (2.5)

where ϕk(·) is an adaptive tuning function to automatically regulate an existing raw-data distance
d(X,Y) according to the temporal correlation with ϕk(u) = 2/(1+exp(ku)), k ≥ 0. The value CorT(X,Y) =
0 implies dCorT(X,Y) = d(X,Y).

2.4. Periodogram-based distance

Caiado et al. (2006) propose the Euclidean distance between the periodogram ordinates as

dPer(X,Y) =
1
n

√√ n∑
k=1

(IX(λk) − IY(λk))2, (2.6)

where IX(λk) = T−1|∑T
t=1 Xte−iλkt |2 is the periodogram of X and IY (λk) = T−1|∑T

t=1 Yte−iλk t |2 is the
periodogram of Y, at frequencies λk = 2πk/T , k = 1, . . . , n, with n = [(T − 1)/2].

2.5. Fréchet distance

Fréchet (1906) proposed a method for measuring proximity between continuous curves. Fréchet dis-
tance is widely used in the discrete case (Eiter and Mannila, 1994) and time series framework. Let M
be the set of all possible sequences of m pairs that are preserved in the form of observation order r
denoted as

r =
((

Xa1 , Yb1

)
, . . . ,

(
Xam , Ybm

))
while ai, b j ∈ {1, . . . , T } such that a1 = b1 = 1, am = bm = T , and ai+1 = ai or ai + 1 and bi+1 = bi or
bi + 1, for i ∈ {1, . . . ,m − 1}.

The Fréchet distance is defined by

dF(X,Y) = min
r∈M

(
max

i=1,...,m

∣∣∣Xai − Ybi

∣∣∣) . (2.7)

Fréchet distance not only treats the series as two point sets, but also considers the order of observation.
Note that dF(X,Y) can also be computed on series of different lengths.

2.6. Piccolo distance

Piccolo (1990) argues that autoregressive expansions convey all the useful information about the
stochastic structure of processes except for initial values. If the series are non-stationary, differencing
is carried out to make them stationary. If the series have seasonality, seasonality is removed before fur-
ther analysis, then they are fitted with the truncated AR(∞) models of order k1 and k2 approximating
the generation processes of X and Y, respectively, using criteria such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC). This approach solves the problem of obtaining ad
hoc ARMA approximation for each series subjected to clustering.
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The Piccolo’s distance with k = max (k1, k2) takes the following form as

dPic(X,Y) =

√√√ k∑
j=1

(
π̂∗j,X − π̂∗j,Y

)2
, (2.8)

where Π̂X = (π̂1,X, . . . , π̂k1,X)′ and Π̂Y = (π̂1,Y, . . . , π̂k2,Y)′ denote the vectors of AR(k1) and AR(k2)
parameter estimations for X and Y, respectively.

If j ≤ k1, and π̂∗j,X = 0 otherwise, and analogously π̂∗j,Y = π̂ j,Y, if j ≤ k2, and π̂∗j,Y = 0 otherwise.
In addition to satisfying the distance properties such as non-negativity, symmetry and triangularity,∑
π j,

∑ ||π j||,
∑
π2

j are well-defined quantities. Therefore dPic always exists in all invertible ARIMA
processes.

2.7. Maharaj distance

A major feature of the Maharaj method is the introduction of hypothesis tests to see if the two time
series are significantly different. Maharaj (1996, 2000) uses hypothesis testing to determine whether
the two time series have significantly different generating processes for the invertible and stationary
ARIMA classes.

The test statistic is

dMah(X,Y) =
√

T
(
Π̂
∗
X − Π̂

∗
Y

)′
V̂−1 (

Π̂
∗
X − Π̂

∗
Y

)
, (2.9)

where Π̂
∗
X and Π̂

∗
Y are the AR(k) parameter estimations of X and Y, respectively, with k selected as in

the Piccolo’s distance. V̂ is an estimator of V = σ2
XR−1

X (k) + σ2
YR−1

Y (k). σ2
X and σ2

Y are the variances
of the white noise processes associated with X, Y. RX and RY are the sample covariance matrices of
both series. dMah is asymptotically χ2 distributed under the null hypothesis ΠX = ΠY.

Therefore, the dissimilarity measure between Π̂X and Π̂Y through associated p-value is

dMah,p(X,Y) = P
(
χ2

k > dMah (X,Y)
)
. (2.10)

If a hierarchical algorithm starting from the pairwise matrix of p-values dMah,p is developed, then a
clustering homogeneity criterion is provided by pre-specifying a threshold significance level α such
as 5% or 1%. Those series with associated p-values greater than α will be grouped together. It implies
that only those series whose dynamic structures are not significantly different at level α will be placed
in the same group. The test statistic dMah and the associated p-value dMah,p satisfy the properties of
non-negativity and symmetry; therefore they can be used as dissimilarity of X and Y. dMah evaluates
dissimilarity by comparing autoregressive approximations of two series, similar to Piccolo distance
dPic. But dMah can be affected by the scale unit because it uses variance of white noise processes,
unlike dPic.

2.8. Cepstral-based distance

The linear predictive coding (LPC) cepstrum is proposed by Kalpakis et al. (2001) to be useful for
clustering ARIMA time series, and provides good properties for distinguishing between ARIMA time
series. The cepstrum is defined as the inverse Fourier transform of the logarithm of a signal spectrum.
The LPC cepstrum is a cepstrum constructed using autoregression coefficients from the linear model
of the signal. The LPC cepstrum is so named because the cepstrum is derived from the LPC of the
signal.
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Cepstral-based distance is calculated as the Euclidean distance between the LPC cepstral coeffi-
cients of X and Y,

dLPC.Cep(X,Y) =

√√√ T∑
i=1

(
ψi,X − ψi,Y

)2, (2.11)

where a time series X following an AR(p) structure such as Xt =
∑p

r=1 ϕrXt−r + ϵt with the autoregres-
sion coefficients ϕr, a white noise process ϵt ∼ (0, σ2). Here the LPC cepstral coefficients are defined
as

ψh =



ϕ1, if h = 1,

ϕh +

h−1∑
r=1

(ϕr − ψh−r) , if 1 < h ≤ p,

p∑
r=1

(
1 − r

h

)
ϕrψh−r, if p < h.

2.9. Compression-based dissimilarity measure

The Kolmogorov complexity of an object x, K(x) is the shortest program length that can produce x
on a universal computer such as a Turing machine. K(x) is the minimum amount of information for
generating x by an algorithm. The larger K(x), the greater the complexity. Similarly, given two objects
x and y, the conditional Kolmogorov complexity of x given y, K(x|y) is the length of the minimum
program that produces x when y is given as an auxiliary input on the program. Therefore, K(x)−K(x|y)
is the amount of information that y generates for x.

Based on this theory, Li et al. (2004) present the normalized information distance (NID) as:

dNID(x, y) =
max {K(x|y),K(y|x)}

max {K(x),K(y)} . (2.12)

Here dNID is a metric with a value of [0, 1]. The biggest problem with dNID is that Kolmogorov
complexity is uncomputable. So, approximate K(·) by the length of the compression object obtained
from data compressors such as gzip and bzip2 (compression program).

Let C(X) and C(Y) be the compressed size of X and Y, respectively. The denominator of dNID
is easily approximated to max {C(X),C(Y)}, but the numerator is difficult to approximate because
it contains conditional Kolmogorov complexities. Li et al. (2004) solve this problem by using the
theory that K(x|y) is roughly equal to K(xy) − K(y), where K(xy) is the minimum program length to
calculate the sequence of x and y. A normalized compression distance (NCD) approximating the NID
is expressed as

dNCD(X,Y) =
C(XY) −min {C(X),C(Y)}

max {C(X),C(Y)} . (2.13)

A metric dNCD has a value from 0 to 1+ϵ, where ϵ is the error due to the deficiency of the compression
techniques.

Keogh et al. (2004) (see also Keogh et al. (2007)) propose a simplified version of the NCD called
a compression-based dissimilarity measure (CDM) as

dCDM(X,Y) =
C(X,Y)

C(X)C(Y)
. (2.14)



Comparison of time series clustering methods 595

This metric dNCD ranges from 1/2 to 1, where 1/2 means pure identity and 1 means maximum dis-
crepancy.

2.10. Complexity-invariant dissimilarity measure

Batista et al. (2011) argue that highly complex time series pairs often tend to be further apart than
simple series pairs. This means that complex series can be incorrectly assigned to a class with less
complexity. To reduce this effect, Batista et al. (2011) use information on the difference in complexity
between the two series as a correction factor for conventional dissimilarity measures. A complexity-
invariant dissimilarity measure (CID) is defined as

dCID(X,Y) = CF(X,Y) · d(X,Y) (2.15)

where an existing raw-data distance d(X,Y) and a complexity correction factor CF(X,Y) with

CF(X,Y) =
max{CE(X),CE(Y)}
min{CE(X),CE(Y)} , CE(X) =

√√√T−1∑
t=1

(Xt − Xt+1)2.

Here CE(·) is a complexity estimator of series. If all the complexity of the series is the same, then
dCID(X,Y) = d(X,Y).

3. Clustering methods

3.1. Hierarchical clustering

Hierarchical clustering works by combining individual objects with similar objects or groups sequen-
tially and hierarchically using a tree model. It uses a dendrogram, a tree-like structure that shows the
order in which objects are joined, so we can do this without having to define a number of clusters
in advance. After creating the dendrogram, the tree can be cut at the appropriate level to divide the
entire data into several clusters. The distance or similarity between objects is required to perform
hierarchical clustering. We calculate group objects that are close together in sequence along with the
distance between the newly bundled cluster and another object (or another cluster). Several linkage
methods can be used and we use the complete linkage method in this paper. The complete linkage
method uses the farthest distance of all pairs of objects in two clusters when calculating the distance
between two clusters.

3.2. K-means clustering

K-means clustering is a method of forming clusters by gathering individuals close to the center of each
cluster. K-means clustering must first set the center of each cluster. Unlike hierarchical clustering, it
can only work by specifying the number of clusters in advance. Let X = C1 ∪ C2 ∪ · · · ∪ CK , and
Ci ∩C j = ϕ. Clusters are determined by

arg min
C

K∑
i=1

∑
x j∈Ci

∣∣∣∣∣∣x j − ci

∣∣∣∣∣∣2 , (3.1)

where ci is the center of the cluster. The operation of K-means clustering is similar to the EM algo-
rithm. Initially, each object is assigned to a cluster based on the centers of the cluster given at random.
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The center value is calculated in each cluster. The objects are then assigned to the cluster again, ac-
cording to the new center. The operation stops when the center converges in a certain place or fills a
predetermined number of iterations.

3.3. Clustering validity

To evaluate clustering validity we consider four measures. Error rate (ER) and similarity (sim) index
compare the actual clusters with the estimated clusters. The Dunn index and silhouette measure are
computed to compare within cluster connectedness.

(i) Error rate (ER)

Let H be a clustering map defined as

H( f , g) =
{

1, if f and g are in the same cluster,
0, otherwise.

Regarding the estimation error, the clustering estimation error rate η(K) is defined by Serban and
Wasserman (2005) as

η(K) =
1

NC2

∑
r<s

I (HK( fr, fs)) , ĤK

(
f̂r, f̂s

)
, (3.2)

where C = { f1, . . . , fN} denote the true curves and Ĉ = { f̂1, . . . , f̂N} denote the estimated curves.

(ii) Similarity index (Sim index)

Sim (G,C) =
1
K

K∑
i=1

max
1≤ j≤K

Similarity
(
Gi,C j

)
, where Similarity

(
Gi,C j

)
=

[
Gi ∩ C j

]
[Gi] +

[
C j

] , (3.3)

where G = {G1, . . . ,GK} is the true partition, and C = {C1, . . . ,CK} is the partition obtained via
clustering algorithm. [·] denotes the cardinality of the elements in the set.

(iii) Dunn index

Dunn (1974) proposed an internal measure of clustering as

D(C) =
minCk ,Cl∈C,Ck,Cl

(
mini∈Ck , j∈Cl dist(i, j)

)
maxCm∈C diam (Cm)

, (3.4)

where diam (Cm) is the maximum distance between observations in cluster Cm, and d(i, j) is the
distance between data points xi and x j in the cluster Ci. A larger value means it is tighter in the
same cluster.

(iv) Silhouette

Rousseeuw (1987) proposed silhouette width as the average of each observation’s silhouette value.

s(i) =
b(i) − a(i)

max{a(i), b(i)} , (3.5)
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where

a(i) =
1

[Ci] − 1

∑
j∈Ci, i, j

d(i, j) and b(i) = min
k,i

1
[Ck]

∑
j∈Ck

d(i, j).

The silhouette value is from −1 to 1 and means how tightly grouped an internal evaluation is. A
larger value means it is tighter.

4. Data analysis

4.1. Simulation

We design a set of 100 time series in five clusters. Each cluster has 20 time series. Each time series
has 96 time points. The errors are generated independently from N(0, 1). The description of each
cluster is :

Cluster 1. Step up and down 
Xt ∼ N(1, 1), t = 1, . . . , 20,
Xt ∼ N(8, 2), t = 21, . . . , 70,
Xt ∼ N(1, 1), t = 71, . . . , 96.

Cluster 2. Combined AR model{
Xt = 1.5 + 0.8Xt−1 + ϵt, t = 1, . . . , 48,
Xt = −1 + 0.6Xt−1 + ϵt, t = 49, . . . , 96, where ϵt ∼ N(0, 1).

Cluster 3. ARMA model

Xt = 4 + 0.5Xt−1 + ϵt + ϵt−1, t = 1, . . . , 96, where ϵt ∼ N(0, 1).

Cluster 4. Periodic model

Xt = 3 sin
(

20(t − 1)
95

)
+ 5 + ϵt, t = 1, . . . , 96, where ϵt ∼ N(0, 1).

Cluster 5. Complex periodic model

Xt = 2
[
sin

(
20(t−1)

95

)
+ 2

∣∣∣∣∣∣sin
(

20(t−1)
4 × 95

)∣∣∣∣∣∣
]
+ 4 + ϵt, t = 1, . . . , 96, where ϵt ∼ N(0, 1).

Figure 1 shows one data set (a) in the simulation and mean lines (b) of each cluster. The simulation
results are obtained from 100 repetitions. We used 10 distance measures with hierarchical complete
linkage and K-means clustering algorithm respectively. Table 1 and Table 2 show the results. Hier-
archical and K-means clustering methods with each distance measure provide some similar measures
of cluster validity. According to ER, the best performance is done with dCID in both hierarchical and
K-mean clustering. Either clustering with dPer has the highest silhouette values. Based on the Sim
index, dCorT is the best in hierarchical clustering and dCID is the best in K-means clustering. The meth-
ods are substantially different; however, they lead to acceptable models in the sense of cluster validity
measures.
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(a) (b)

Figure 1: One simulation data set of 100 cases (a) and average lines of each cluster (b).

Table 1: Hierarchical clustering performance with simulation data

Distance Measure
ER Sim index Dunn index Silhouette

ACF 0.2991 0.5388 0.4173 0.1006
Cor 0.1995 0.6547 0.5747 0.2477

CorT 0.1189 0.8002 0.3547 0.3022
Per 0.2108 0.6954 0.3188 0.4807

Frechet 0.1834 0.7124 0.2723 0.2212
AR.Pic 0.2852 0.5771 0.1312 0.2802

AR.Mah 0.1797 0.7213 0.0464 0.4702
AR.LPC.CEP 0.1764 0.7117 0.1880 0.2902

CDM 0.2545 0.5547 0.9776 0.0009
CID 0.1055 0.8200 0.4502 0.3623

Table 2: K-means clustering performance with simulation data

Distance Measure
ER Sim index Dunn index Silhouette

ACF 0.2991 0.5388 0.4173 0.1006
Cor 0.0886 0.8472 0.4630 0.2282

CorT 0.0865 0.8556 0.2889 0.2949
Per 0.1087 0.8138 0.1562 0.4991

Frechet 0.1059 0.8261 0.3016 0.2649
AR.Pic 0.1840 0.6780 0.0696 0.2612

AR.Mah 0.1730 0.7314 0.0114 0.4436
AR.LPC.CEP 0.1423 0.7475 0.1119 0.2784

CDM 0.1530 0.7089 0.9762 0.0014
CID 0.0778 0.8708 0.3361 0.3278

In practice, attention should be given to the choice of the distance and clustering algorithm. Each
property should be considered to make proper clusters. A range of feature-, model-, and complexity-
based dissimilarities are included in this paper. For instance, the K-means clustering algorithm moves
each series to the cluster whose centroid is closest in order to recalculate the cluster centroid and
repeats the procedure until no more are assigned. The range of proper methods become limited and
careful implementation is required once the clustering objectives are made clear and the characteristics
of time series are considered.
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Table 3: List of 90 devices and buildings in 16 companies located in South Korea

Company Type Company Type Company Type

D1

LV2

S1

L-B T1 Welding Line Distribution Board
LV5 LP-A1

P1

Unit1 1
Chiller No.4 LP-M Unit1 2
Chiller No.6 PA-2 Unit1 3
Chiller No.7 PA-3 Unit1 4
Chiller No.8 PB-1 Unit1 5

Water treatment S2 E V Unit1 coiler

D2

L-1M public Water supply Unit2 1
L-2 main

S3

1F Unit2 2
L-14 main 2,3,4F Unit2 3

LP-CAR parking tower 5F Unit2 4

M1
Main device Public Unit2 coiler
Main office Main Unit3 1

Grooving machine

B1

F-B3 Unit3 2

G1
Public L-F Unit3 3
Main L-O Unit3 incidental equipment

Shopping area P-CAR Unit3 coiler

N1

250KVA Main P-E-1 Unit4 1
300KVA Main P-EHP Unit4 2

Load1
K1

Main circuit breaker Unit4 3
Load2 Circuit breaker1 Unit4 4
Load3 Circuit breaker4 Unit4 incidental equipment
Lathe1

C1

Load1 Unit4 coiler
Lathe2 Load2

H1

L-1A
New material Load3 L-M

Grinder Load4 Public
Urethane1

T1

A-04

H1

LC-1 office main
Urethane2 B-01 Main MCCB

D3 Rooftop CO2 welding machine Sub1 light
S1 L-A Main press Main1 main

4.2. Electricity consumption data analysis

For a clustering application, we use a power consumption data set from a total of 90 devices and
buildings in 16 companies located in South Korea on June 19, 2018 (Table 3). Power consumption
data measured every 15 minutes is a time series with a total of 96 time points per day. Each power
consumption pattern varies widely, but can be divided into three types: continuous consumption, on-
off repetition, and turning on and off once a day. For example, machine A repeats on-off every 1
hour from 9 am, but machine B can repeat on-off every 2 to 3 hours even if it starts at 9 am. Various
continuous patterns are also possible according to working periods and workloads.

According to comparing the silhouette values from three to ten clusters based on dCID, the sil-
houette value of resulting four clusters was the highest. Therefore we determined four clusters from
dCID which was the best in the simulation. The distances used for cluster analysis are dAR.Mah, dCID,
dCor, dCorT, and dPer. The missing values in the data are estimated using the Stineman (1980) interpo-
lation which creates a curve with no more inflection points than clearly required by the given set of
points. We used this method by na.interpolation of imputeTS (Morits and Bartz-Beielstein, 2017) R
packages.

Table 4 provides the clustering validity measures of this real power consumption data. Figure 2
gives clusters and their averaging patterns using the dPer in hierarchical complete linkage and K-means
clustering. The patterns in each cluster are shown in the far left figure with the average lines. Figure
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Table 4: Hierarchical & K-means clustering with electricity consumption data with 4 clusters
Method Measure Cor CorT Per AR.Mah CID

Hierarchical Dunn index 0.6077 0.2632 0.5383 0.0059 0.0235
Silhouette 0.1972 0.6823 0.7799 0.3408 0.6142

K-means Dunn index 0.4076 0.0066 0.1415 0.0004 0.0008
Silhouette 0.1002 0.4646 0.6568 0.2940 0.2793

(a) Hierarchical

(b) K-means

Figure 2: A real data clustering result by using dPer. (a) Hierarchical, (b) K-means.

3 provides cluster members by dPer in K-means. Cluster 1 has some continuous pattern. Cluster 2 has
many devices of on-off form, Cluster 3 has some main devices, and chiller devices are in Cluster 4.
There is some limit to device interpretation since the exact device information is not allowed.

5. Discussion

The development of smart grids has enabled the easy collection of vast amount of power data. In order
to efficiently analyze this huge data, it is very useful to quickly catch and cluster power consumption
patterns. If you can understand power consumption patterns, there is an advantage in analysis such as
prediction. We compared 10 distance measures using hierarchical clustering and K-means clustering.
Simulation provides that there is no one best clustering. The time series structure should be reflected
in doing clustering analysis. There should be more measures to evaluate time series clustering except
Dunn index and silhouette width. This work could be extended to meet the requirements of real-time
data processing applications, such as clustering the power consumption of appliances and controlling
usage patterns, and possibly the detection of appliances with anomalies that indicate faulty or compro-
mised appliances. We hope that this research will help serve others interested in advancing time series
clustering research. For power consumption big data, clustering is a challenging problem considering
local and global profiles with computational burden and effective complexity modelling.
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Figure 3: Cluster members obtained by dPer in K-means.
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