In this paper a new cluster validation index which is heuristic but able to eliminate the monotonically decreasing tendency occurring in which the number of cluster c gets very large and close to the number of data points n is proposed. We review the FCM algorithm and some conventional cluster validity criteria discuss on the limiting behavior of the proposed validity index and provide some numerical examples showing the effectiveness of the proposed cluster validity index.
클러스터링 알고리즘에서 최적의 클러스터 수를 결정하기 위한 효율적인 고속 탐색 알고리즘을 소개한다. 제안하는 방법은 클러스터링 적합도의 척도로 사용되는 클러스터 타당성 평가기준을 토대로 한다. 데이터 집합에 클러스터링 프로세스를 진행하여 최적의 클러스터 형상에 도달하게 되면 클러스터 타당성 평가기준은 최대 혹은 최소값을 가질 것으로 기대한다. 본 논문에서는 최적의 클러스터 개수를 찾기 위한 고속의 비소모적 탐색 방법을 설계하고 실제 클러스터링과 접목한다. 제안하는 알고리즘은 k-means++ 클러스터링 알고리즘에 적용하였고, 클러스터 타당성 평가기준으로써 CB 및 PBM 타당성 평가기준 방법을 사용하였다. 몇몇의 가상 데이터 집합과 실제 데이터 집합에 실험한 결과, 제안하는 방법은 정확도의 손실 없이 계산 효율을 획기적으로 증가시킴을 보여주었다.
자기조직화지도는 고차원의 원자료를 노드들로 이루어진 저차원의 공간으로 투영하는 비지도학습 방법이다. 이 방법은 고차원의 자료를 노드들을 사용하여 2 또는 3차원의 공간에서 시각화할 수 있고, 이를 통해 자료의 특성을 탐색하는데 유용하다. 자료의 구조를 파악하기 위해 종종 노드들에 대한 군집분석을 시도하는데, 군집분석의 중요한 문제중 하나는 군집의 개수를 결정하는 것이다. 이 문제를 해결하기 위해 다양한 군집타당성지수들이 지금까지 개발되어 왔고, 이러한 지수들은 자기조직화지도의 노드들의 군집분석에 직접적으로 적용될 수 있다. 그러나, 자기조직화 지도가 원자료의 위상적 특성을 저차원 공간에 반영할 수 있다는 특징을 갖는데 반해, 이러한 일반적인 지수들은 이를 고려하지 않는 문제가 있다. 이에 본 연구에서는 원자료의 위상적 특성을 고려한 노드들 사이의 연결강도를 기반으로 하는 군집타당성지수를 제안한다. 이 새로운 군집타당성지수의 성능은 모의실험을 통해 기존의 군집타당성지수들과의 비교되고 검증된다.
The K-means algorithm is widely used at the initial stage of data analysis in data mining process, partly because of its low time complexity and the simplicity of practical implementation. Cluster validity indices are used along with the algorithm in order to determine the number of clusters as well as the clustering results of datasets. In this paper, we present a performance comparison of sixteen indices, which are selected from forty indices in literature, while considering their applicability to nonhierarchical clustering algorithms. Data sets used in the experiment are generated based on multivariate normal distribution. In particular, four error types including standardization, outlier generation, error perturbation, and noise dimension addition are considered in the comparison. Through the experiment the effects of varying number of points, attributes, and clusters on the performance are analyzed. The result of the simulation experiment shows that Calinski and Harabasz index performs the best through the all datasets and that Davis and Bouldin index becomes a strong competitor as the number of points increases in dataset.
본 논문에서는 퍼지 클러스터링 알고리즘에 의해 구해진 퍼지 분할에 대한 최적 클러스터 수를 결정하는 방법을 제안한다. 제안된 척도는 퍼지 클러스터들간의 중첩성과 분리성을 이용한다. 중첩성은 클러스터간 인접도를 이용하여 계산하며, 분리성은 데이터에 대한 상관성 정도로 나타낸다. 따라서 중첩성이 낮고 분리성이 높을수록 좋은 클러스터 결과라고 할 수 있다. 표준 데이터 집합을 대상으로 기존의 척도들과 비교 실험함으로써 제안된 척도의 신뢰성을 검증하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권3호
/
pp.337-340
/
2004
The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.
유전자 발현 자료(gene expression data)는 전형적인 고차원 자료이며, 이를 분석하기 위한 여러 가지 군집 알고리즘(clustering algorithm)과 군집 결과들을 검증하는 군집타당성분석 기법(cluster validation technique)이 제안되고 있지만, 이들 군집 타당성을 분석하는 기법의 성능에 대한 비교, 평가는 매우 드물다. 본 논문에서는 저차원의 모의실험 자료와 실제 유전자 발현 자료에 대하여 군집 타당성분석 기법들의 성능을 비교하였으며, 그 결과 내적 측도에서는 Dunn 지수, Silhouette 지수 순으로 뛰어났고 외적 측도에서는 Jaccard 지수가 성능이 가장 우수한 것으로 평가되었다.
K-평균 군집화(K-means clustering)는 고객 세분화(customer segmentation) 등 데이터 마이닝에서 중요한 한 몫을 하는 비지도 학습방법 (unsupervised learning method)이다. K-평균 군집화가 재현성(reproducibility)이 있는가를 보기 위하여, 다수의 기존 연구에서는 관측 자료를 2개 셋으로 나눈 자료 분할(data partitioning) 방법이 활용되고 있다. 본 교신에서 우리는 이보다 개념적으로 명확한 새로운 자료 분할 방법을 제안한다. 이 방법은 관측 자료를 3개 셋으로 나누어 그 중 2개 자료 셋을 독립적인 군집화 규칙을 생성하는 데 사용하고 나머지 1개의 자료 셋을 규칙간 일치성을 테스트하는데 사용한다. 또한 2개의 군집화 규칙간 일치성 평가를 위한 지표로서 엔트로피 기준의 환용 방법을 제시한다.
Purpose: This study was done to verify validity and reliability of a neonatal patient classification system (NeoPCS-1). Methods: An expert group of 8 nurse managers and 40 nurses from 8 Neonatal Intensive Care Units in Korea, verified content validity of the measurement using item level content validity index (I-CVI). The participants were nurses caring for 469 neonates. Data were collected from November 11 to December 14, 2011 and analyzed using descriptive statistics, ANOVA, intraclass correlation coefficient, and K-cluster analysis with PASW 18.0 program. Results: Nursing domains and activities included 8 items with 91 activities. I-CVI was above .80 in all areas. Interrater reliability was significant between two raters (r=.95, p<.001). Classification scores for participants according to patient types and nurses' intuition were significantly higher for the following patients; gestational age (${\leq}29$ weeks), body weight (<1,000 gm), and transfer from hospital. Six groups were classified using cluster analysis method based on nursing needs. Patient classification scores were significantly different for the groups. Conclusion: These results show adequate validity and reliability for the NeoPCS-1 based on nursing needs. Study is needed to refine the measurement and develop index scores to estimate number of nurses needed for adequate neonatal care.
본 논문에서는 Fussy C-Means (FCM) 알고리즘에 의해 계산된 퍼지 클러스터들에 대한 평가 인덱스를 제안한다. 제안된 인덱스는 퍼지 클러스터들간의 인접성(inter-cluster proximity)을 이용한다. 클러스터 인접성을 도입함으로써 클러스터간의 중첩 정도를 계산할 수 있다. 따라서, 인접성 값이 낮을수록 클러스터들은 공간에 잘 분포하게 됨을 알 수 있다. 다양한 데이터 집합에 대한 실험을 통해서 제안된 인덱스의 효율성과 신뢰성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.