DOI QR코드

DOI QR Code

A Cluster Validity Index Using Overlap and Separation Measures Between Fuzzy Clusters

클러스터간 중첩성과 분리성을 이용한 퍼지 분할의 평가 기법

  • 김대원 (한국과학기술원 전산학과) ;
  • 이광형 (한국과학기술원 전산학과)
  • Published : 2003.08.01

Abstract

A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure is obtained by computing an inter-cluster overlap. The separation measure is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.

본 논문에서는 퍼지 클러스터링 알고리즘에 의해 구해진 퍼지 분할에 대한 최적 클러스터 수를 결정하는 방법을 제안한다. 제안된 척도는 퍼지 클러스터들간의 중첩성과 분리성을 이용한다. 중첩성은 클러스터간 인접도를 이용하여 계산하며, 분리성은 데이터에 대한 상관성 정도로 나타낸다. 따라서 중첩성이 낮고 분리성이 높을수록 좋은 클러스터 결과라고 할 수 있다. 표준 데이터 집합을 대상으로 기존의 척도들과 비교 실험함으로써 제안된 척도의 신뢰성을 검증하였다.

Keywords

References

  1. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, NY, 1981.
  2. J.C. Bezdek, "Numerical taxonomy with fuzzy sets", J. Math. Biology, Vol. 1, pp. 57-71, 1974. https://doi.org/10.1007/BF02339490
  3. J.C. Bezdek, "Cluster validity with fuzzy sets", J. Cyber-nit., Vol. 3, pp. 58-72, 1974.
  4. N.R. Pal and J.C. Bezdek, "On cluster validity for the fuzzy c-means model", IEEE Transactions on Fuzzy Systems, Vol. 3, No. 3, pp. 370-379, 1995. https://doi.org/10.1109/91.413225
  5. X.L. Xie and G. Beni, "A validity measure for fuzzy clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 8, pp. 841-847, 1991. https://doi.org/10.1109/34.85677
  6. Y. Fukuyama and M. Sugeno, "A new method of choosing the number of clusters for the fuzzy c-means method", Proceedings of 5th Fuzzy Systems Symposium, pp. 247-250, 1989.
  7. S.H. Kwon, "Cluster validity index for fuzzy clustering", Electronics Letters, Vol. 34, No. 22, pp. 2176-2177, 1998. https://doi.org/10.1049/el:19981523
  8. M.R. Rezaee, B.P.F. Lelieveldt, and J.H.C Reiber, "A new cluster validity index for the fuzzy c-mean", Pattern Reconigition Letters, Vol. 19, pp. 237-246, 1998. https://doi.org/10.1016/S0167-8655(97)00168-2
  9. A.O. Boudraa, "Dynamic estimation of number of clusters in data sets", Electronics Letters, Vol. 35, No. 19, pp. 1606-1607, 1999. https://doi.org/10.1049/el:19991151
  10. N. Zahid, M. Limouri, and A.Essaid, "A new cluster-validity for fuzzy clustering", Pattern Recognition, Vol. 32, pp. 1089-1097, 1999. https://doi.org/10.1016/S0031-3203(98)00157-5
  11. D.J. Kim, Y.W. Park, and D.J. Park, "A novel validity index for determination of the optimal number of clusters", IEICE Transactions on Information and Systems, E84-D(2), pp. 281-285, 2001.
  12. A.M. Bensaid,et aI,"Validity guided (re)clustering with applications to image segmentation", IEEE Transactions on Fuzzy Systems, Vol. 4, No. 2, pp. 112-123, 1996. https://doi.org/10.1109/91.493905
  13. J.C. Bezdek and N.R. Pal, "Some new indexes of cluster validity", IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 28, No. 3, pp. 301-315, 1998. https://doi.org/10.1109/3477.678624
  14. H. Lee-Kwang, Y.S. Song, K.M. Lee, "Similarity measure between fuzzy sets and between elements", Fuzzy Sets and Systems, Vol. 62, pp. 291-293, 1994. https://doi.org/10.1016/0165-0114(94)90113-9