• Title/Summary/Keyword: cluster method

Search Result 2,498, Processing Time 0.031 seconds

An Adaptive Regional Clustering Scheme Based on Threshold-Dataset in Wireless Sensor Networks for Monitoring of Weather Conditions (기상감시 무선 센서 네트워크에 적합한 Threshold-dataset 기반 지역적 클러스터링 기법)

  • Choi, Dong-Min;Shen, Jian;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1287-1302
    • /
    • 2011
  • Clustering protocol that is used in wireless sensor network is an efficient method that extends the lifetime of the network. However, when this method is applied to an environment in which collected data of the sensor node easily overlap, sensor nodes unnecessarily consumes energy. In the case of clustering technique that uses a threshold, the lifetime of the network is extended but the degree of accuracy of collected data is low. Therefore it is hard to trust the data and improvement is needed. In addition, it is hard for the clustering protocol that uses multi-hop transmission to normally collect data because the selection of a cluster head node occurs at random and therefore the link of nodes is often disconnected. Accordingly this paper suggested a cluster-formation algorithm that reduces unnecessary energy consumption and that works with an alleviated link disconnection. According to the result of performance analysis, the suggested method lets the nodes consume less energy than the existing clustering method and the transmission efficiency is increased and the entire lifetime is prolonged by about 30%.

Classification of Urban Arterial Roads Based on Traffic Characteristics (교통특성에 따른 도시간선도로 위계분류법)

  • Lee, Jinsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2018
  • Studies on classification of national roads have been continued, but there is little research on the classification of urban arterial roads. Due to the increase of traffic volume, urban arterial roads do not perform well as main roads. In this paper, the function of urban arterial road was established by using cluster analysis using traffic characteristics. Traffic characteristics such as traffic volume, weekend coefficient and speed coefficient were used to establish the functions of 55 main arterial roads in Seoul. The results of this paper are compared with those of the method using AADT. The method using AADT classifies the characteristics according to the traffic volume of the whole lane. In this paper, however, the results are derived using the traffic volume per lane reflecting the actual traffic volume. In addition, the functional classification of the arterial roads in Seoul was compared with the results of this paper to verify that the traffic characteristics were reflected. As a result, the method presented in this paper is more effective in showing traffic characteristics than the current highway functional classification method, and the functional classification system will be helpful for road extension and planning design.

New Sequential Clustering Combination for Rule Generation System (규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합)

  • Kim, Sung Suk;Choi, Ho Jin
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a new clustering combination based on numerical data driven for rule generation mechanism. In large and complicated space, a clustering method can obtain limited performance results. To overcome the single clustering method problem, hybrid combined methods can solve problem to divided simple cluster estimation. Fundamental structure of the proposed method is combined by mountain clustering and modified Chen clustering to extract detail cluster information in complicated data distribution of non-parametric space. It has automatic rule generation ability with advanced density based operation when intelligent systems including neural networks and fuzzy inference systems can be generated by clustering results. Also, results of the mechanism will be served to information of decision support system to infer the useful knowledge. It can extend to healthcare and medical decision support system to help experts or specialists. We show and explain the usefulness of the proposed method using simulation and results.

An Incremental Web Document Clustering Based on the Transitive Closure Tree (이행적 폐쇄트리를 기반으로 한 점증적 웹 문서 클러스터링)

  • Youn Sung-Dae;Ko Suc-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • In document clustering methods, the k-means algorithm and the Hierarchical Alglomerative Clustering(HAC) are often used. The k-means algorithm has the advantage of a processing time and HAC has also the advantage of a precision of classification. But both methods have mutual drawbacks, a slow processing time and a low quality of classification for the k-means algorithm and the HAC, respectively. Also both methods have the serious problem which is to compute a document similarity whenever new document is inserted into a cluster. A main property of web resource is to accumulate an information by adding new documents frequently. Therefore, we propose a new method of transitive closure tree based on the HAC method which can improve a processing time for a document clustering, and also propose a superior incremental clustering method for an insertion of a new document and a deletion of a document contained in a cluster. The proposed method is compared with those existing algorithms on the basis of a pre챠sion, a recall, a F-Measure, and a processing time and we present the experimental results.

  • PDF

Multi-document Summarization Based on Cluster using Term Co-occurrence (단어의 공기정보를 이용한 클러스터 기반 다중문서 요약)

  • Lee, Il-Joo;Kim, Min-Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.243-251
    • /
    • 2006
  • In multi-document summarization by means of salient sentence extraction, it is important to remove redundant information. In the removal process, the similarities and differences of sentences are considered. In this paper, we propose a method for multi-document summarization which extracts salient sentences without having redundant sentences by way of cohesive term clustering method that utilizes co-occurrence Information. In the cohesive term clustering method, we assume that each term does not exist independently, but rather it is related to each other in meanings. To find the relations between terms, we cluster sentences according to topics and use the co-occurrence information oi terms in the same topic. We conduct experimental tests with the DUC(Document Understanding Conferences) data. In the tests, our method shows better performance of summarization than other summarization methods which use term co-occurrence information based on term cohesion of document or sentence unit, and simple statistical information.

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF

Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method (제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

A Study For the Development of Enhanced Classification Method of Consumer Attributes (사용자 요구품질 추출과 분류방법의 개선에 관한 연구)

  • 김승남;김철홍;정영배;김연수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.67
    • /
    • pp.77-82
    • /
    • 2001
  • A study was conducted to develop a better classification method of Consumer Attributes that can enhance user-centered product design process. A modified QFD(Quality Function Deployment) survey form based upon Fuzzy set theory was proposed which contains 9 steps of importance level, and Certainty and Necessity function to improve the reliability of extracted consumer attributes. To verify the betterment and advantage of proposed classification method, a series of questionnaire survey was performed. Thirty male and 30 female university students were participated in the survey using a VCR as a target product. The result of the study showed that 80% of subjects were preferred the proposed classification over existing method. A cluster analysis was performed to further verify the betterment of the proposed method. The result also supported that the proposed classification method is more reliable and enhanced method in extracting consumer attributes and can be applied in the product design.

  • PDF

Unsupervised Speaker Adaptation Based on Sufficient HMM Statistics (SUFFICIENT HMM 통계치에 기반한 UNSUPERVISED 화자 적응)

  • Ko Bong-Ok;Kim Chong-Kyo
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • This paper describes an efficient method for unsupervised speaker adaptation. This method is based on selecting a subset of speakers who are acoustically close to a test speaker, and calculating adapted model parameters according to the previously stored sufficient HMM statistics of the selected speakers' data. In this method, only a few unsupervised test speaker's data are required for the adaptation. Also, by using the sufficient HMM statistics of the selected speakers' data, a quick adaptation can be done. Compared with a pre-clustering method, the proposed method can obtain a more optimal speaker cluster because the clustering result is determined according to test speaker's data on-line. Experiment results show that the proposed method attains better improvement than MLLR from the speaker independent model. Moreover the proposed method utilizes only one unsupervised sentence utterance, while MLLR usually utilizes more than ten supervised sentence utterances.

  • PDF

A Study on clustering method for Banlancing Energy Consumption in Hierarchical Sensor Network (계층적 센서 네트워크에서 균등한 에너지 소비를 위한 클러스터링 기법에 관한 연구)

  • Kim, Yo-Sup;Hong, Yeong-Pyo;Cho, Young-Il;Kim, Jin-Su;Eun, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3472-3480
    • /
    • 2010
  • The Clustering technology of Energy efficiency wireless sensor network gets the energy efficiency by reducing the number of communication between sensor nodes and sink node. In this paper, First analyzed on the clustering technique of the distributed clustering protocol routing scheme LEACH (Low Energy Adaptive Clustering Hierarchy) and HEED (Hybrid, Energy-Efficient Distributed Clustering Approach), and based on this, new energy-efficient clustering technique is proposed for the cause the maximum delay of dead nodes and to increase the lifetime of the network. In the proposed method, the cluster head is elect the optimal efficiency node based on the residual energy information of each member node and located information between sink node and cluster node, and elected a node in the cluster head since the data transfer process from the data been sent to the sink node to form a network by sending the energy consumption of individual nodes evenly to increase the network's entire life is the purpose of this study. To verify the performance of the proposed method through simulation and compared with existing clustering techniques. As a result, compared to the existing method of the network life cycle is approximately 5-10% improvement could be confirmed.