• Title/Summary/Keyword: cluster method

Search Result 2,498, Processing Time 0.029 seconds

Analysis of Roadkill Hotspot According to the Spatial Clustering Methods (공간 군집지역 탐색방법에 따른 로드킬 다발구간 분석)

  • Song, Euigeun;Seo, Hyunjin;Kim, Kyungmin;Woo, Donggul;Park, Taejin;Choi, Taeyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.580-591
    • /
    • 2019
  • This study analyzed roadkill hotspots in Yeongju, Mungyeong-si Andong-si and Cheongsong-gun to compare the method of searching the area of the spatial cluster for selecting the roadkill hotspots. The local spatial autocorrelation index Getis-Ord Gi* statistics were calculated by different units of analysis, drawing hotspot areas of 9% from 300 m and 14% from 1 km on the basis of the total road area. The rating of Z-score in the 1km hotspot area showed the highest Z-score in the 28th National Road section on the border between Yecheon-gun and Yeongj-si. The kernel density method performed general kernel density estimation and network kernel density estimation analysis, both of which made it easier to visualize roadkill hotspots than district unit analysis, but there were limitations that it was difficult to determine statistically significant priority. As a result, local hotspot areas were found to be different according to the cluster analysis method, and areas that are in common need of reduction measures were found to be the hotspot of 28th National Road through Yeongju-si and Yecheon-gun. It is deemed that the results of this study can be used as basic data when identifying roadkill hotspots and establishing measures to reduce roadkill.

Study on User Characteristics based on Conversation Analysis between Social Robots and Older Adults: With a focus on phenomenological research and cluster analysis (소셜 로봇과 노년층 사용자 간 대화 분석 기반의 사용자 특성 연구: 현상학적 분석 방법론과 군집 분석을 중심으로)

  • Na-Rae Choi;Do-Hyung Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • Personal service robots, a type of social robot that has emerged with the aging population and technological advancements, are undergoing a transformation centered around technologies that can extend independent living for older adults in their homes. For older adults to accept and use social robot innovations in their daily lives on a long-term basis, it is crucial to have a deeper understanding of user perspectives, contexts, and emotions. This research aims to comprehensively understand older adults by utilizing a mixed-method approach that integrates quantitative and qualitative data. Specifically, we employ the Van Kaam phenomenological methodology to group conversations into nine categories based on emotional cues and conversation participants as key variables, using voice conversation records between older adults and social robots. We then personalize the conversations based on frequency and weight, allowing for user segmentation. Additionally, we conduct profiling analysis using demographic data and health indicators obtained from pre-survey questionnaires. Furthermore, based on the analysis of conversations, we perform K-means cluster analysis to classify older adults into three groups and examine their respective characteristics. The proposed model in this study is expected to contribute to the growth of businesses related to understanding users and deriving insights by providing a methodology for segmenting older adult s, which is essential for the future provision of social robots with caregiving functions in everyday life.

Modified TDS (Task Duplicated based Scheduling) Scheme Optimizing Task Execution Time (태스크 실행 시간을 최적화한 개선된 태스크 중복 스케줄 기법)

  • Jang, Sei-Ie;Kim, Sung-Chun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.549-557
    • /
    • 2000
  • Distributed Memory Machine(DMM) is necessary for the effective computation of the data which is complicated and very large. Task scheduling is a method that reduces the communication time among tasks to reduce the total execution time of application program and is very important for the improvement of DMM. Task Duplicated based Scheduling(TDS) method improves execution time by reducing communication time of tasks. It uses clustering method which schedules tasks of the large communication time on the same processor. But there is a problem that cannot optimize communication time between task sending data and task receiving data. Hence, this paper proposes a new method which solves the above problem in TDS. Modified Task Duplicated based Scheduling(MTDS) method which can approximately optimize the communication time between task sending data and task receiving data by checking the optimal condition, resulted in the minimization of task execution time by reducing the communication time among tasks. Also system modeling shows that task execution time of MTDS is about 70% faster than that of TDS in the best case and the same as the result of TDS in the worst case. It proves that MTDS method is better than TDS method.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

The Study on Improvement of Cohesion of Clustering in Incremental Concept Learning (점진적 개념학습의 클러스터 응집도 개선)

  • Baek, Hey-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.297-304
    • /
    • 2003
  • Nowdays, with the explosive growth of the web information, web users Increase requests of systems which collect and analyze web pages that are relevant. The systems which were develop to solve the request were used clustering methods to improve the duality of information. Clustering is defining inter relationship of unordered data and grouping data systematically. The systems using clustering provide the grouped information to the users. So, they understand the information efficiently. We proposed a hybrid clustering method to cluster a large quantity of data efficiently. By that method, We generate initial clusters using COBWEB Algorithm and refine them using Ezioni Algorithm. This paper adds two ideas in prior hybrid clustering method to increment accuracy and efficiency of clusters. Firstly, we propose the clustering method considering weight of attributes of data. Second, we redefine evaluation functions which generate initial clusters to increase efficiency in clustering. Clustering method proposed in this paper processes a large quantity of data and diminish of dependancy on sequence of input of data. So the clusters are useful to make user profiles in high quality. Ultimately, we will show that the proposed clustering method outperforms the pervious clustering method in the aspect of precision and execution speed.

Independent Component Analysis for Clustering Analysis Components by Using Kurtosis (첨도에 의한 분석성분의 군집성을 고려한 독립성분분석)

  • Cho, Yong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.429-436
    • /
    • 2004
  • This paper proposes an independent component analyses(ICAs) of the fixed-point (FP) algorithm based on Newton and secant method by adding the kurtosis, respectively. The kurtosis is applied to cluster the analyzed components, and the FP algorithm is applied to get the fast analysis and superior performance irrelevant to learning parameters. The proposed ICAs have been applied to the problems for separating the 6-mixed signals of 500 samples and 10-mixed images of $512\times512$ pixels, respectively. The experimental results show that the proposed ICAs have always a fixed analysis sequence. The results can be solved the limit of conventional ICA without a kurtosis which has a variable sequence depending on the running of algorithm. Especially. the proposed ICA can be used for classifying and identifying the signals or the images. The results also show that the secant method has better the separation speed and performance than Newton method. And, the secant method gives relatively larger improvement degree as the problem size increases.

Independent Component Analysis for Clustering Components by Using Fixed-Point Algorithm of Secant Method and Kurtosis (할선법의 고정점 알고리즘과 첨도에 의한 군집성의 독립성분분석)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.336-341
    • /
    • 2004
  • This paper proposes an independent component analysis(ICA) of the fixed-point (FP) algorithm based on secant method and the kurtosis. The FP algorithm based on secant method is applied to improve the analysis speed and performance by simplifying the calculation process of the complex derivative in Newton method, the kurtosis is applied to cluster the components. The proposed ICA has been applied to the problems for separating the 6-mixed signals of 500 samples and 8-mixed images of $512{\times}512$ pixels, respectively. The experimental results show that the proposed ICA has always a fixed analysis sequence. The result can be solved the limit of conventional ICA based on secant method which has a variable sequence depending on the running of algorithm. Especially, the proposed ICA can be used for classifying and identifying the signals or the images.

Multiobjective Genetic Algorithm for Design of an Bicriteria Network Topology (이중구속 통신망 설계를 위한 다목적 유전 알고리즘)

  • Kim, Dong-Il;Kwon, Key-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • Network topology design is a multiobjective problem with various design components. The components such as cost, message delay and reliability are important to gain the best performance. Recently, Genetic Algorithms(GAs) have been widely used as an optimization method for real-world problems such as combinatorial optimization, network topology design, and so on. This paper proposed a method of Multi-objective GA for Design of the network topology which is to minimize connection cost and message delay time. A common difficulty in multiobjective optimization is the existence of an objective conflict. We used the prufer number and cluster string for encoding, parato elimination method and niche-formation method for the fitness sharing method, and reformation elitism for the prevention of pre-convergence. From the simulation, the proposed method shows that the better candidates of network architecture can be found.

Two-Phase Clustering Method Considering Mobile App Trends (모바일 앱 트렌드를 고려한 2단계 군집화 방법)

  • Heo, Jeong-Man;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose a mobile app clustering method using word clusters. Considering the quick change of mobile app trends, the proposed method divides the mobile apps into some semantically similar mobile apps by applying a clustering algorithm to the mobile app set, rather than the predefined category system. In order to alleviate the data sparseness problem in the short mobile app description texts, the proposed method additionally utilizes the unigram, the bigram, the trigram, the cluster of each word. For the purpose of accurately clustering mobile apps, the proposed method manages to avoid exceedingly small or large mobile app clusters by using the word clusters. Experimental results show that the proposed method improves 22.18% from 57.48% to 79.66% on overall accuracy by using the word clusters.

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF