• Title/Summary/Keyword: cloud-storage

Search Result 434, Processing Time 0.021 seconds

Enabling Dynamic Multi-Client and Boolean Query in Searchable Symmetric Encryption Scheme for Cloud Storage System

  • Xu, Wanshan;Zhang, Jianbiao;Yuan, Yilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1286-1306
    • /
    • 2022
  • Searchable symmetric encryption (SSE) provides a safe and effective solution for retrieving encrypted data on cloud servers. However, the existing SSE schemes mainly focus on single keyword search in single client, which is inefficient for multiple keywords and cannot meet the needs for multiple clients. Considering the above drawbacks, we propose a scheme enabling dynamic multi-client and Boolean query in searchable symmetric encryption for cloud storage system (DMC-SSE). DMC-SSE realizes the fine-grained access control of multi-client in SSE by attribute-based encryption (ABE) and novel access control list (ACL), and supports Boolean query of multiple keywords. In addition, DMC-SSE realizes the full dynamic update of client and file. Compared with the existing multi-client schemes, our scheme has the following advantages: 1) Dynamic. DMC-SSE not only supports the dynamic addition or deletion of multiple clients, but also realizes the dynamic update of files. 2) Non-interactivity. After being authorized, the client can query keywords without the help of the data owner and the data owner can dynamically update client's permissions without requiring the client to stay online. At last, the security analysis and experiments results demonstrate that our scheme is safe and efficient.

Clustering-Based Mobile Gateway Management in Integrated CRAHN-Cloud Network

  • Hou, Ling;Wong, Angus K.Y.;Yeung, Alan K.H.;Choy, Steven S.O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2960-2976
    • /
    • 2018
  • The limited storage and computing capacity hinder the development of cognitive radio ad hoc networks (CRAHNs). To solve the problem, a new paradigm of cloud-based CRAHN has been proposed, in which a CRAHN will make use of the computation and storage resources of the cloud. This paper envisions an integrated CRAHN-cloud network architecture. In this architecture, some cognitive radio users (CUs) who satisfy the required metrics could perform as mobile gateway candidates to connect other ordinary CUs with the cloud. These mobile gateway candidates are dynamically clustered according to different related metrics. Cluster head and time-to-live value are determined in each cluster. In this paper, the gateway advertisement and discovery issues are first addressed to propose a hybrid gateway discovery mechanism. After that, a QoS-based gateway selection algorithm is proposed for each CU to select the optimal gateway. Simulations are carried out to evaluate the performance of the overall scheme, which incorporates the proposed clustering and gateway selection algorithms. The results show that the proposed scheme can achieve about 11% higher average throughput, 10% lower end-to-end delay, and 8% lower packet drop fractions compared with the existing scheme.

Study on Hybrid Type Cloud System (하이브리드형 클라우드 시스템에 관한 연구)

  • Jang, Jae-Youl;Kim, Do-Moon;Choi, Chul-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.611-618
    • /
    • 2016
  • The suggested paper studies communications network and system technology, designing data to sync to both USB memories and cloud storages at the same time, which would allow users to safely keep and manage data even in case of network troubles, affecting cloud storages, and/or loss of physical USB memories, resulting in lost data in the physical memory. The need of secure data management policy for cloud storage users form the basis of this study, offering solutions to network failures and loss of physical storage by creating hybrid cloud system. To provide convenience to windows users, the UI design should integrate that of windows explorer to maximize security and convenience.

The Automatic Collection and Analysis System of Cloud Artifact (클라우드 아티팩트 자동 수집 및 분석 시스템)

  • Kim, Mingyu;Jeong, Doowon;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1377-1383
    • /
    • 2015
  • As the cloud services users' increase, there are important files created by individual in cloud storage. Thus, investigation of cloud artifact should be conducted. There are two methods of analyzing cloud service, one is that investigates cloud server provider (CSP), and another is that investigates client. In this paper, we presents an automated framework to detect the altered artifact and developes a tool that detects the cloud artifact. We also developed Cloud Artifact Tool that can investigate client computer. Cloud Artifact Tool provides feature of collection and analysis for the services such as Google Drive, Dropbox, Evernote, NDrive, DaumCloud, Ucloud, LG Cloud, T Cloud and iCloud.

An Exhaustive Review on Security Issues in Cloud Computing

  • Fatima, Shahin;Ahmad, Shish
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3219-3237
    • /
    • 2019
  • The Cloud Computing is growing rapidly in the current IT industry. Cloud computing has become a buzzword in relation to Grid & Utility computing. It provides on demand services to customers and customers will pay for what they get. Various "Cloud Service Provider" such as Microsoft Azure, Google Web Services etc. enables the users to access the cloud in cost effective manner. However, security, privacy and integrity of data is a major concern. In this paper various security challenges have been identified and the survey briefs the comprehensive overview of various security issues in cloud computing. The classification of security issues in cloud computing have been studied. In this paper we have discussed security challenges in cloud computing and also list recommended methods available for addressing them in the literature.

Design and Implementation of a Cloud Data Management Interface(CDMI) System (클라우드 데이터 관리 인터페이스(CDMI) 시스템 설계 및 구현)

  • Ahn, Minje;Jeon, Inbae;Son, Ingook;Li, He;Park, Yonghun;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.28-35
    • /
    • 2013
  • Recently, cloud data management has been actively studied along with the development of a cloud computing technology that can process large amounts of data at a lower cost. However, the existing cloud computing platforms do not guarantee interoperability according to the construction environments of users because they do not provide technical and political openness. In other words, in order for users to receive the related services, they use services provided by only one vendor. In this paper, we design and implement a storage interface that supports the international standard CDMI in order to retrieve, update, and delete data in could environments. These interfaces provide the functionality required for developers who want to build and use the cloud storage without special restrictions. In addition, we verify the operability and usability of CDMI international standard through the implementation of the proposed system.

Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration

  • Nandhini, Uma;TamilSelvan, Latha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3916-3936
    • /
    • 2014
  • Smartphone applications like games, image processing, e-commerce and social networking are gaining exponential growth, with the ubiquity of cellular services. This demands increased computational power and storage from mobile devices with a sufficiently high bandwidth for mobile internet service. But mobile nodes are highly constrained in the processing and storage, along with the battery power, which further restrains their dependability. Adopting the unlimited storage and computing power offered by cloud servers, it is possible to overcome and turn these issues into a favorable opportunity for the growth of mobile cloud computing. As the mobile internet data traffic is predicted to grow at the rate of around 65 percent yearly, even advanced services like 3G and 4G for mobile communication will fail to accommodate such exponential growth of data. On the other hand, developers extend popular applications with high end graphics leading to smart phones, manufactured with multicore processors and graphics processing units making them unaffordable. Therefore, to address the need of resource constrained mobile nodes and bandwidth constrained cellular networks, the computations can be migrated to resourceful servers connected to cloud. The server now acts as a bridge that should enable the participating mobile nodes to offload their computations through Wi-Fi directly to the virtualized server. Our proposed model enables an on-demand service offloading with a decision support system that identifies the capabilities of the client's hardware and software resources in judging the requirements for offloading. Further, the node's location, context and security capabilities are estimated to facilitate adaptive migration.

Privacy-Preserving Self-Certified Public Auditing for Secure Cloud Storage (안전한 클라우드 스토리지를 위한 프라이버시 보장 자체 인증 공공 감사)

  • Baek, Mokryeon;Kim, Dongmin;Jeong, Ik Rae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.497-508
    • /
    • 2016
  • With a cloud storage service, data owners can easily access their outsourced data in cloud storage on different devices and at different locations, and can share their data with others. However, as the users no longer physically have possession of their outsourced data and the cloud still facing the existence of internal/external threats, the task of checking the data integrity is formidable. Over recent years, numerous schemes have been proposed to ensure data integrity in an untrusted cloud. However, the existing public auditing schemes use a third-party auditor(TPA) to execute high computation to check data integrity and may still face many security threats. In this paper, we first demonstrate that the scheme proposed by Zhang et al. is not secure against our two threat models, and then we propose a self-certified public auditing scheme to eliminate the security threats and guarantee a constant communication cost. Moreover, we prove the securities of our public auditing scheme under three security models.

SSD Caching for Improving Performance of Virtualized IoT Gateway (가상화 환경 IoT 게이트웨이의 성능 향상을 위한 SSD 캐시 기법)

  • Lee, Dongwoo;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.954-960
    • /
    • 2015
  • It is important to improve the performance of storage in the home cloud environment within the virtualized IoT gateway since the performance of applications deeply depends on storage. Though SSD caching is applied in order to improve the storage, it is only used for read-cache due to the limitations of SSD such as poor write performance and small write endurance. However, it is important to improve performance of the write operation in the home cloud server, in order to improve the end-user experience. This paper propose a novel SSD caching which considers write-data as well as read-data. We validate the enhancement in the performance of random-write by transforming it to the sequential patterns.

A Real-Time Surveillance System for Vaccine Cold Chain Based o n Internet of Things Technology

  • Shao-jun Jiang;Zhi-lai Zhang;Wen-yan Song
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.394-406
    • /
    • 2023
  • In this study, a real-time surveillance system using Internet of Things technology is proposed for vaccine cold chains. This system fully visualizes vaccine transport and storage. It comprises a 4G gateway module, lowpower and low-cost wireless temperature and humidity collection module (WTHCM), cloud service software platform, and phone app. The WTHCM is installed in freezers or truck-mounted cold chain cabinets to collect the temperature and humidity information of the vaccine storage environment. It then transmits the collected data to a gateway module in the radiofrequency_physical layer (RF_PHY). The RF_PHY is an interface for calling the bottom 2.4-GHz transceiver, which can realize a more flexible communication mode. The gateway module can simultaneously receive data from multiple acquisition terminals, process the received data depending on the protocol, and transmit the collated data to the cloud server platform via 4G or Wi-Fi. The cloud server platform primarily provides data storage, chart views, short-message warnings, and other functions. The phone app is designed to help users view and print temperature and humidity data concerning the transportation and storage of vaccines anytime and anywhere. Thus, this system provides a new vaccine management model for ensuring the safety and reliability of vaccines to a greater extent.